Multiplicative classification of associative rings
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 205-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $R$ be a ring, $l(a)$ and $r(a)$ the left and right annihilators of the element $a\in R$, $\mathrm{AC}(R)=\sum_{a,b\in R}l(a)bl(b)a$ the two-sided ideal in $R$ called the additive controller, and let $\alpha\colon R\to S$ be an $m$-isomorphism (i.e., multiplicative isomorphism) and $D(\alpha)=\{[(x+y)^\alpha-x^\alpha-y^\alpha]^{\alpha^{-1}}/x,y\in R\}$ its defect. An ideal $I$ in the ring $R$ is called an $m$-ideal if for all $m$-isomorphisms $\alpha\colon R\to S$, $L^\alpha$ is an ideal in $S$ and $a-b\in L$ if and only if $a^\alpha-b^\alpha\in L^\alpha$. It is shown that $$ D(\alpha)\mathrm{AC}(R)=0=\mathrm{AC}(R)D(\alpha). $$ Very general sufficient conditions are given that a multiplicative isomorphism of subsemigroups of multiplicative semigroups of rings be extendible to the isomorphism of the subrings generated by them. Minimal prime ideals and the prime radical of a ring are $m$-ideals. The strongly regular and regular rings that have unique addition are characterized. Bibliography: 29 titles.
@article{SM_1989_63_1_a13,
     author = {A. V. Mikhalev},
     title = {Multiplicative classification of associative rings},
     journal = {Sbornik. Mathematics},
     pages = {205--218},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/}
}
TY  - JOUR
AU  - A. V. Mikhalev
TI  - Multiplicative classification of associative rings
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 205
EP  - 218
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/
LA  - en
ID  - SM_1989_63_1_a13
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%T Multiplicative classification of associative rings
%J Sbornik. Mathematics
%D 1989
%P 205-218
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/
%G en
%F SM_1989_63_1_a13
A. V. Mikhalev. Multiplicative classification of associative rings. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/

[1] Avtomorfizmy klassicheskikh grupp, Mir, M., 1976 | MR

[2] Andrunakievich V. A., Ryabukhin Yu. M., Radikaly algebr i strukturnaya teoriya, Nauka, M., 1979 | MR

[3] Ber R., Lineinaya algebra i proektivnaya geometriya, IL, M., 1955

[4] Gluskin L. M., “Polugruppy i koltsa endomorfizmov lineinykh prostranstv”, Izv. AN SSSR. Ser. matem., 23 (1959), 841–870 | MR | Zbl

[5] Gluskin L. M., “Ob endomorfizmakh modulei”, Algebra i matematicheskaya logika, KGU, Kiev, 1966, 3–20 | MR

[6] Golubchik I. Z. Mikhalev A. V., “Izomorfizmy polnoi lineinoi gruppy nad assotsiativnym koltsom”, Vestn. Mosk. un-ta. Matem. mekhan., 1983, no. 3, 61–72 | MR | Zbl

[7] Dzhekobson Zh., Stroenie kolets, IL, M., 1961

[8] Dedonne Zh., Geometriya klassicheskikh grupp, Mir, M., 1974 | MR

[9] Izomorfizmy klassicheskikh grupp nad tselostnymi koltsami, Mir, M., 1980 | MR

[10] Lambek M., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[11] Mikhalev A. V., “Izomorfizmy polugrupp endomorfizmov modulei. I”, Algebra i logika, 5:5 (1966), 59–67 | MR | Zbl

[12] Mikhalev A. V., “Izomorfizmy polugrupp endomorfizmov modulei. II”, Algebra i logika, 6:2 (1967), 35–47 | MR | Zbl

[13] Mikhalev A. V., “Koltsa s odnoznachnym slozheniem.”, Vestn. Mosk. un-ta. Matem., mekhan., 1985, no. 5, 86

[14] Mikhalev A. V., “Koltsa s odnoznachnym slozheniem”, 18-ya Vsesoyuznaya algebraicheskaya konferentsiya, Chast 2, Shtiintsa, Kishinev, 1985, 32

[15] Mustafaev L. G., “Polugruppy lineinykh nepreryvnykh preobrazovanii. I, II”, Spetsialnye voprosy algebry i topologii, EVM, Baku, 1980, 50–60 ; 61–65 | MR | Zbl

[16] Skornyakov L. A., Dedekindovy struktury s dopolneniyami i regulyarnye koltsa, FM, M., 1961

[17] Feis K., Algebra: koltsa, moduli i kategorii, T. I, Mir, M., 1977

[18] Feis K., Algebra: koltsa, moduli i kategorii, T. II, Mir, M., 1979 | MR

[19] Kherstein I., Nekommutativnye koltsa, Mir, M., 1972 | MR

[20] Arnold B. H., “Rings of operators on vector spaces”, Ann. Math., 45:1 (1944), 24–49 | DOI | MR | Zbl

[21] Eidelheit M., “On isomorphisms of rings of linear operators”, Stud. math. (PRL), 9 (1940), 97–105 | MR | Zbl

[22] Goodearl K. R., Von Neumann regular rings, Pitman, 1979 | MR

[23] Johnson R. E., “Rings with unique addition”, Proc. Amer. Math. Soc., 9 (1958), 55–61 | DOI | MR

[24] Mackey G. W., “Isomorphisms of normed linear spaces”, Ann. Math., 43 (1942), 244–260 | DOI | MR | Zbl

[25] Martindale W. S., “III. When are multiplicative mappings additive?”, Proc. Amer. Math. Soc., 21:3 (1969), 695–698 | DOI | MR | Zbl

[26] Nelius Chr.-F., Ringe mit eindentiger Addition, Paderborn, 1974

[27] Rickart C. E., “One-to-one mappings of rings and lattices”, Bull. Amer. Math. Soc., 54 (1948), 758–764 | DOI | MR | Zbl

[28] Satyanarayana M., “On semigroups admitting ring structure. I, II”, Semigroup Forum, 3:1 (1971), 43–50 ; 6:3 (1973), 189–197 | DOI | MR | Zbl | DOI | MR | Zbl

[29] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455—1461 | MR | Zbl