Multiplicative classification of associative rings
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 205-218

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a ring, $l(a)$ and $r(a)$ the left and right annihilators of the element $a\in R$, $\mathrm{AC}(R)=\sum_{a,b\in R}l(a)bl(b)a$ the two-sided ideal in $R$ called the additive controller, and let $\alpha\colon R\to S$ be an $m$-isomorphism (i.e., multiplicative isomorphism) and $D(\alpha)=\{[(x+y)^\alpha-x^\alpha-y^\alpha]^{\alpha^{-1}}/x,y\in R\}$ its defect. An ideal $I$ in the ring $R$ is called an $m$-ideal if for all $m$-isomorphisms $\alpha\colon R\to S$, $L^\alpha$ is an ideal in $S$ and $a-b\in L$ if and only if $a^\alpha-b^\alpha\in L^\alpha$. It is shown that $$ D(\alpha)\mathrm{AC}(R)=0=\mathrm{AC}(R)D(\alpha). $$ Very general sufficient conditions are given that a multiplicative isomorphism of subsemigroups of multiplicative semigroups of rings be extendible to the isomorphism of the subrings generated by them. Minimal prime ideals and the prime radical of a ring are $m$-ideals. The strongly regular and regular rings that have unique addition are characterized. Bibliography: 29 titles.
@article{SM_1989_63_1_a13,
     author = {A. V. Mikhalev},
     title = {Multiplicative classification of associative rings},
     journal = {Sbornik. Mathematics},
     pages = {205--218},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/}
}
TY  - JOUR
AU  - A. V. Mikhalev
TI  - Multiplicative classification of associative rings
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 205
EP  - 218
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/
LA  - en
ID  - SM_1989_63_1_a13
ER  - 
%0 Journal Article
%A A. V. Mikhalev
%T Multiplicative classification of associative rings
%J Sbornik. Mathematics
%D 1989
%P 205-218
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/
%G en
%F SM_1989_63_1_a13
A. V. Mikhalev. Multiplicative classification of associative rings. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 205-218. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a13/