Anderson's conjecture and the maximal monoid class over which projective modules are free
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 165-180 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A positive solution is given to a conjecture of D. F. Anderson (Pacific J. Math. 1978, V. 79, No 1, P. 5–17) concerning freeness of finitely generated projective modules over normal monoid algebras. In the special case of torsion divisor class groups, or equivalently, the case of an integral extension, this conjecture was proved in 1982 (see Gubeladze, Generalized Serre problem for affine rings generated by monomials, Izdat. Tbiliss. Gos. Univ., Tbilisi, 1982, and Chouinard // Mich. Math. J. 1982. V. 29, No 2, P. 143–148). Using that result, the author obtains a description of the maximal class of commutative monoids satisfying the cancellation condition for which all finitely generated projective modules over the corresponding semigroup algebra (with any principal ideal domain as coefficient ring) are free. Namely, this class turns out to be the so-called “seminormal” monoids. By the same token a complete answer is given to some questions posed by Chouinard in the paper cited above. Bibliography: 15 titles.
@article{SM_1989_63_1_a11,
     author = {I. D. Gubeladze},
     title = {Anderson's conjecture and the maximal monoid class over which projective modules are free},
     journal = {Sbornik. Mathematics},
     pages = {165--180},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a11/}
}
TY  - JOUR
AU  - I. D. Gubeladze
TI  - Anderson's conjecture and the maximal monoid class over which projective modules are free
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 165
EP  - 180
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a11/
LA  - en
ID  - SM_1989_63_1_a11
ER  - 
%0 Journal Article
%A I. D. Gubeladze
%T Anderson's conjecture and the maximal monoid class over which projective modules are free
%J Sbornik. Mathematics
%D 1989
%P 165-180
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a11/
%G en
%F SM_1989_63_1_a11
I. D. Gubeladze. Anderson's conjecture and the maximal monoid class over which projective modules are free. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 165-180. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a11/

[1] Suslin A. A., “Proektivnye moduli nad koltsami mnogochlenov svobodny”, DAN SSSR, 229 (1976), 1063–1066 | MR | Zbl

[2] Quillen D., “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 167–171 | DOI | MR | Zbl

[3] Chouinard L. G., “Projective modules over Krull semigroup rings”, Mich. Math. J., 29:8 (1982), 143–148 | MR | Zbl

[4] Anderson D. F., “Projective modules over subrings of $k[X,Y]$ generated by monomials”, Pacific J. Math., 79 (1978), 5–15 | MR

[5] Gubeladze I. Dzh., Obobschennaya problema Serra dlya affinnykh kolets, porozhdennykh odnochlenami, Izd-vo TGU, Tbilisi, 1982

[6] Gubeladze I. Dzh., “Proektivnye moduli nad affinnymi koltsami, porozhdennymi odnochlenami”, Issledovaniya po algebre, Izd-vo TGU, Tbilisi, 1985, 25–43

[7] Chouinard L. G., “Krull semigroups and divisor class groups”, Canad. J. Math., 33:6 (1981), 1459–1468 | MR | Zbl

[8] Hochster M., “Rings of invariants of tori, Cohen–Macaulay rings generated by monomials, and polytopes”, Ann. Math., 96:2 (1972), 318–337 | DOI | MR | Zbl

[9] Bass Kh., Algebraicheskaya K-teoriya, Mir, M., 1973 | MR | Zbl

[10] Lam T. Y., “Serre's conjecture”, Lecture Notes in Math., 635, Springer-Verlag, Berlin, 1978 | Zbl

[11] Swan R., “Projective modules over Laurent polynomial rings”, Trans. Amer. Math. Soc., 237:514 (1978), 111–120 | DOI | MR | Zbl

[12] Swan R., “On seminormality”, J. Algebra, 67:1 (1980), 210–229 | DOI | MR | Zbl

[13] Anderson D. F., “Seminormal graded rings. II”, J. Pure and Appl. Alg., 23:3 (1982), 221–226 | DOI | MR | Zbl

[14] Gilmer R., Heitman R., “On $\operatorname{Pic}\bigl(R[x]\bigr)$ for R seminormal”, J. Pure and Appl. Alg., 16:3 (1980), 251–257 | DOI | MR | Zbl

[15] Danilov V. I., “Geometriya toricheskikh mnogoobrazii”, UMN, 33:2 (1978), 85–134 | MR | Zbl