@article{SM_1989_63_1_a0,
author = {A. P. Laurincikas},
title = {A~limit theorem for the {Riemann} zeta-function close to the critical line},
journal = {Sbornik. Mathematics},
pages = {1--9},
year = {1989},
volume = {63},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/}
}
A. P. Laurincikas. A limit theorem for the Riemann zeta-function close to the critical line. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/
[1] Bohr U., “Uber diophanthische Approximationen und ihre Anwendungen auf Dirichletsche Reihen, besonders auf die Riemannsche Zetafunction”, Proc. 5th congress of Seand. math. Helsingfors, 1922, 131–154
[2] Bohr H., Jessen B., “Uber die Werteverteilung der Riemannschen Zetafunction”, Acta Math., 54 (1930), 1–35 | DOI | MR | Zbl
[3] Bohr H., Jessen B., “Uber die Werteverteilung der Riemannschen Zetafunction”, Acta Math., 58 (1932), 1–55 | DOI | MR | Zbl
[4] Jessen B., Wintner A., “Distribution functions and the Riemann zeta-function”, Trans. Amer. Math. Soc., 38 (1935), 48–88 | DOI | MR | Zbl
[5] Nikishin E. M., “Ryady Dirikhle s nezavisimymi pokazatelyami i ikh nekotorye primeneniya”, Matem. sb., 96(138) (1975), 3–40 | Zbl
[6] Bagchi B., The statistical behaviour and universality properties of the Riemann zetafunction and allied Dirichlet serie. (Thesis), Indian Stat. Inst., Calcutta, 1981
[7] Leipnik R., “The Cognormal distribution and strong nonuniqueness of the moment problem”, Teoriya veroyatn. i ee primen., XXVI:4 (1981), 863–865 | MR
[8] Laurinchikas A., “O momentakh dzeta-funktsii Rimana na kriticheskoi pryamoi”, Matem. zametki, 39:4 (1986), 483–493 | MR | Zbl
[9] Laurinchikas A., “Predelnaya teorema dlya dzeta-funktsii Rimana na kriticheskoi pryamoi. I”, Lit. matem. sb., XXVIII:1 (1987) | MR
[10] Heath-Brown D. R., “Fractional moments of the Riemann zeta-function”, J. London, Math. Soc., 24(2):1 (1981), 65–78 | DOI | MR | Zbl
[11] Jutila M., “On the value distribution of the zeta-function on the critical line”, Bull. London Math. Soc., 15 (1983), 513–518 | DOI | MR | Zbl