A~limit theorem for the Riemann zeta-function close to the critical line
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that as $T\to\infty$ the distribution function $$ \frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|^\frac{1}{\sqrt{2^{-1}\ln\ln T}}\} $$ approaches the distribution function of the logarithmic normal distribution. Here $\operatorname{mes}\{A\}$ is the Lebesgue measure of the set $A$, and $$ \sigma_T=\frac12+\frac{\sqrt{\ln\ln T}\psi(T)}{\ln T}, $$ where $\psi(T)\to\infty$ and $\ln\psi(T)=o(\ln\ln T)$ as $T\to\infty$. Bibliography: 11 titles.
@article{SM_1989_63_1_a0,
     author = {A. P. Laurincikas},
     title = {A~limit theorem for the {Riemann} zeta-function close to the critical line},
     journal = {Sbornik. Mathematics},
     pages = {1--9},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/}
}
TY  - JOUR
AU  - A. P. Laurincikas
TI  - A~limit theorem for the Riemann zeta-function close to the critical line
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 1
EP  - 9
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/
LA  - en
ID  - SM_1989_63_1_a0
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%T A~limit theorem for the Riemann zeta-function close to the critical line
%J Sbornik. Mathematics
%D 1989
%P 1-9
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/
%G en
%F SM_1989_63_1_a0
A. P. Laurincikas. A~limit theorem for the Riemann zeta-function close to the critical line. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/