A limit theorem for the Riemann zeta-function close to the critical line
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that as $T\to\infty$ the distribution function $$ \frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|^\frac{1}{\sqrt{2^{-1}\ln\ln T}}<x\} $$ approaches the distribution function of the logarithmic normal distribution. Here $\operatorname{mes}\{A\}$ is the Lebesgue measure of the set $A$, and $$ \sigma_T=\frac12+\frac{\sqrt{\ln\ln T}\psi(T)}{\ln T}, $$ where $\psi(T)\to\infty$ and $\ln\psi(T)=o(\ln\ln T)$ as $T\to\infty$. Bibliography: 11 titles.
@article{SM_1989_63_1_a0,
     author = {A. P. Laurincikas},
     title = {A~limit theorem for the {Riemann} zeta-function close to the critical line},
     journal = {Sbornik. Mathematics},
     pages = {1--9},
     year = {1989},
     volume = {63},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/}
}
TY  - JOUR
AU  - A. P. Laurincikas
TI  - A limit theorem for the Riemann zeta-function close to the critical line
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 1
EP  - 9
VL  - 63
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/
LA  - en
ID  - SM_1989_63_1_a0
ER  - 
%0 Journal Article
%A A. P. Laurincikas
%T A limit theorem for the Riemann zeta-function close to the critical line
%J Sbornik. Mathematics
%D 1989
%P 1-9
%V 63
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/
%G en
%F SM_1989_63_1_a0
A. P. Laurincikas. A limit theorem for the Riemann zeta-function close to the critical line. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/

[1] Bohr U., “Uber diophanthische Approximationen und ihre Anwendungen auf Dirichletsche Reihen, besonders auf die Riemannsche Zetafunction”, Proc. 5th congress of Seand. math. Helsingfors, 1922, 131–154

[2] Bohr H., Jessen B., “Uber die Werteverteilung der Riemannschen Zetafunction”, Acta Math., 54 (1930), 1–35 | DOI | MR | Zbl

[3] Bohr H., Jessen B., “Uber die Werteverteilung der Riemannschen Zetafunction”, Acta Math., 58 (1932), 1–55 | DOI | MR | Zbl

[4] Jessen B., Wintner A., “Distribution functions and the Riemann zeta-function”, Trans. Amer. Math. Soc., 38 (1935), 48–88 | DOI | MR | Zbl

[5] Nikishin E. M., “Ryady Dirikhle s nezavisimymi pokazatelyami i ikh nekotorye primeneniya”, Matem. sb., 96(138) (1975), 3–40 | Zbl

[6] Bagchi B., The statistical behaviour and universality properties of the Riemann zetafunction and allied Dirichlet serie. (Thesis), Indian Stat. Inst., Calcutta, 1981

[7] Leipnik R., “The Cognormal distribution and strong nonuniqueness of the moment problem”, Teoriya veroyatn. i ee primen., XXVI:4 (1981), 863–865 | MR

[8] Laurinchikas A., “O momentakh dzeta-funktsii Rimana na kriticheskoi pryamoi”, Matem. zametki, 39:4 (1986), 483–493 | MR | Zbl

[9] Laurinchikas A., “Predelnaya teorema dlya dzeta-funktsii Rimana na kriticheskoi pryamoi. I”, Lit. matem. sb., XXVIII:1 (1987) | MR

[10] Heath-Brown D. R., “Fractional moments of the Riemann zeta-function”, J. London, Math. Soc., 24(2):1 (1981), 65–78 | DOI | MR | Zbl

[11] Jutila M., “On the value distribution of the zeta-function on the critical line”, Bull. London Math. Soc., 15 (1983), 513–518 | DOI | MR | Zbl