A~limit theorem for the Riemann zeta-function close to the critical line
Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that as $T\to\infty$ the distribution function
$$
\frac1T\operatorname{mes}\{t\in[0,T],\ |\zeta(\sigma_T+it)|^\frac{1}{\sqrt{2^{-1}\ln\ln T}}\}
$$
approaches the distribution function of the logarithmic normal distribution. Here $\operatorname{mes}\{A\}$ is the Lebesgue measure of the set $A$, and
$$
\sigma_T=\frac12+\frac{\sqrt{\ln\ln T}\psi(T)}{\ln T},
$$
where $\psi(T)\to\infty$ and $\ln\psi(T)=o(\ln\ln T)$ as $T\to\infty$.
Bibliography: 11 titles.
@article{SM_1989_63_1_a0,
author = {A. P. Laurincikas},
title = {A~limit theorem for the {Riemann} zeta-function close to the critical line},
journal = {Sbornik. Mathematics},
pages = {1--9},
publisher = {mathdoc},
volume = {63},
number = {1},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/}
}
A. P. Laurincikas. A~limit theorem for the Riemann zeta-function close to the critical line. Sbornik. Mathematics, Tome 63 (1989) no. 1, pp. 1-9. http://geodesic.mathdoc.fr/item/SM_1989_63_1_a0/