On~uniqueness of the~solution of the~chain of~moment equations corresponding to the three-dimensional Navier--Stokes system
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 465-490

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on the uniqueness of the solution of the Cauchy problem for the chain of equations for the spatial moments corresponding to smooth solutions of the three-dimensional Navier–Stokes system in the case of any Reynolds numbers. By means of the uniqueness theorem it is proved that any solution of the chain of moment equations belonging to an appropriate function space forms a positive-definite system of moments for any time $t>0$ if its initial value was positive definite. Bibliography: 11 titles.
@article{SM_1989_62_2_a8,
     author = {A. V. Fursikov},
     title = {On~uniqueness of the~solution of the~chain of~moment equations corresponding to the three-dimensional {Navier--Stokes} system},
     journal = {Sbornik. Mathematics},
     pages = {465--490},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a8/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - On~uniqueness of the~solution of the~chain of~moment equations corresponding to the three-dimensional Navier--Stokes system
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 465
EP  - 490
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a8/
LA  - en
ID  - SM_1989_62_2_a8
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T On~uniqueness of the~solution of the~chain of~moment equations corresponding to the three-dimensional Navier--Stokes system
%J Sbornik. Mathematics
%D 1989
%P 465-490
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a8/
%G en
%F SM_1989_62_2_a8
A. V. Fursikov. On~uniqueness of the~solution of the~chain of~moment equations corresponding to the three-dimensional Navier--Stokes system. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 465-490. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a8/