@article{SM_1989_62_2_a6,
author = {A. V. Kitaev},
title = {The method of isomonodromy deformations and the asymptotics of solutions of the {\textquotedblleft}complete{\textquotedblright} third {Painlev\'e} equation},
journal = {Sbornik. Mathematics},
pages = {421--444},
year = {1989},
volume = {62},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/}
}
TY - JOUR AU - A. V. Kitaev TI - The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation JO - Sbornik. Mathematics PY - 1989 SP - 421 EP - 444 VL - 62 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/ LA - en ID - SM_1989_62_2_a6 ER -
A. V. Kitaev. The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 421-444. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/
[1] Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, Journal für die reine und angewandte Mathematik, 141 (1912), 96–145 | Zbl
[2] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen”, Mathematische Annalen, 63 (1907), 301–321 | DOI | MR | Zbl
[3] Sato M., Dzimbo M., Miva T., Golonomnye kvantovye polya, Mir, M., 1980 | MR
[4] Jimbo M., Kashiwara M., Miwa T., “Monodromy preserving deformation of ramified solutions to $(\Delta-m^2)u=0$”, J. Math. Phys., 22:11 (1981), 2581–2587 | DOI | MR | Zbl
[5] Ueno K., Monodromy preserving deformation of linear differential equations with irregular singular points, Preprint. RIMS-301, RIMS, Kyoto, 1979 | MR
[6] Ueno K., Monodromv preserving deformations and its application to soliton theory, Preprint. RIMS-302, RIMS, Kyoto, 1979 | MR
[7] Jimbo M., Miwa T., Deformation of linear ordinary differental equations. I, Preprint. RIMS-315, RIMS, Kyoto, 1980
[8] Jimbo M., Miwa T., Deformation of linear ordinary differential equations. II, Preprint. RIMS-316, RIMS, Kyoto, 1980 | MR
[9] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Preprint. RIMS-319, RIMS, Kyoto, 1980
[10] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Preprint. RIMS-327, RIMS, Kyoto, 1980
[11] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Preprint. RIMS-344, RIMS, Kyoto, 1980
[12] Flaschka H., Newell A. C., “Monodromy and spectrum preserving deformation”, Commun. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl
[13] Its A. R., “Asimptotika reshenii nelineinogo uravneniya Shredingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl
[14] Its A. R., Petrov V. E., “Izomonodromnye resheniya uravneniya Sine-Gordon i vremennaya asimptotika ego bystroubyvayuschikh reshenii”, Dokl. AN SSSR, 265:6 (1982), 1302–1304 | MR
[15] Its A. R., ““Izomonodromnye” resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49 (1985), 530–564 | MR
[16] Novokshënov V. Yu., “Metod izomonodromnoi deformatsii i asimptotika tretego transtsendenta Penleve”, Funktsion. analiz i ego pril., 18:3 (1984), 90–91 | MR
[17] Novokshënov V. Yu., “Ob asimptotike obschego veschestvennogo resheniya uravneniya Penleve tretego tipa”, Dokl. AN SSSR, 283:5 (1985), 1161–1165 | MR
[18] Novokshënov V. Yu., “Asimptotika pri $f\to\infty$ resheniya zadachi Koshi dlya dvumernogo obobscheniya tsepochki Tody”, Izv. AN SSSR. Ser. matem., 48 (1984), 372–410 | MR
[19] Ablowitz M. J., Segur H., “Exact Linearization of a Painlevé Transcendent”, Phys. Rev. Lett., 38:20 (1977), 1103–1106 | DOI | MR
[20] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939
[21] Gromak V. I., “K teorii uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl
[22] Gromak V. I., “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR | Zbl
[23] Lukashevich N. A., “Elementarnye resheniya nekotorykh uravnenii Penleve”, Differents. uravneniya, 1:6 (1965), 731–735 | Zbl
[24] Gromak V. I., “Ob odnoparametricheskikh semeistvakh reshenii uravnenii Penleve”, Differents. uravneniya, 14:12 (1978), 2131–2135 | MR | Zbl
[25] Bordag L. A., Painlevé equations and their connection with nonlinear evolution equations. Part II, JINR Communication. E5-80-477, JINR, Dubna, 1980
[26] Golubev V. V., “K' teorii uravnenii Painlevé”, Matem. sb., 28:2 (1912), 323–349 | MR | Zbl
[27] Takano K., “A2 – Parameter Family of Solutions of Painlevé Equation (V) near the Point at Infinity”, Funkcialaj Ekvacioj, 26:1 (1983), 79–113 | MR | Zbl
[28] Kimura H., “The Construction of a General Solution of a Hamiltonian System with Regular Type Singularity and Its Application to Painlevé Equations”, Annali di Matematica Pure ed Applicata. Serie Quarta, CXXXIV (1983), 363–392 | DOI | MR
[29] Abdullaev A. S., “Asimptotika reshenii obobschennogo uravneniya Sine-Gordona, tretego uravneniya Penleve i uravneniya Dalambera”, Dokl. AN SSSR, 280:2 (1985), 265–268 | MR | Zbl
[30] McCoy B. M., Tang Sh., Connection Formulae for Painlevé V. Functions, Preprint ITP. ITP-SB-85-3, ITP, New York, 1985 | MR
[31] McCoy B. M., Tang Sh., Connection Formulae for Painlevé V Functions II. The $\delta$ function Bose Gas Problem, Preprint ITP, ITP-SB-85-20, LTP, New York, 1985 | MR
[32] McCoy B. M., Tang Sh., Connection Formulae for Painlevé Functions, Preprint ITP. ITP-SB-85-19, ITP, New York, 1985 | MR
[33] Bordag L. A., Kitaev A. V., Preobrazovaniya reshenii tretego i pyatogo uravnenii Penleve i ikh chastnye resheniya, Soobscheniya OIYaI. R5–85–740, OIYaI, Dubna, 1985
[34] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1968
[35] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl
[36] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973
[37] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1974
[38] Gromak V. I., Tsegelnik V. V., “Nelineinye dvumernye modeli teorii polya i uravneniya Penleve”, TMF, 55:2 (1983), 189–196 | MR | Zbl
[39] Ibragimov N. X., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[40] Boiti M., Pempinelli F., “Nonlinear Schrödinger Equation, Bäcklund Transformations and Painlevé Transcendents”, Nuovo Cimento, 59B:1 (1980), 40–58 | MR
[41] Salihoglu S., “The two-dimensional $O(N)$ nonlinear $\sigma$-model and the fifth Painlevé Transcendent”, Phys. Lett. B, 89:3, 4 (1980), 367–368 | DOI | MR
[42] Fokas A. S., Ablowitz M. J., “On unified approach to transformations and elementary solutions of Painlevé equations”, J. Math. Phys., 23:11 (1982), 2033–2042 | DOI | MR | Zbl