The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 421-444 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A $2\times2$ matrix linear ordinary differential equation of the first order is considered whose coefficients depend on an additional parameter $\tau$ having two irregular first order singular points $\lambda=0$ and $\lambda=\infty$. The monodromy data of this equation as $\tau\to0$ and $\tau\to\infty$ are computed. These computations are used to find the asymptotics of the “degenerate” fifth Painlevé equation, which is equivalent to the “complete” third one. This is possible due to the connection of these Painlevé equations with isomonodromy deformations of the coefficients of the matrix linear equation. Bäcklund transformations and their application to asymptotic problems are considered in detail. Bibliography: 42 titles.
@article{SM_1989_62_2_a6,
     author = {A. V. Kitaev},
     title = {The method of isomonodromy deformations and the asymptotics of solutions of the {\textquotedblleft}complete{\textquotedblright} third {Painlev\'e} equation},
     journal = {Sbornik. Mathematics},
     pages = {421--444},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/}
}
TY  - JOUR
AU  - A. V. Kitaev
TI  - The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 421
EP  - 444
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/
LA  - en
ID  - SM_1989_62_2_a6
ER  - 
%0 Journal Article
%A A. V. Kitaev
%T The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation
%J Sbornik. Mathematics
%D 1989
%P 421-444
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/
%G en
%F SM_1989_62_2_a6
A. V. Kitaev. The method of isomonodromy deformations and the asymptotics of solutions of the “complete” third Painlevé equation. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 421-444. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a6/

[1] Schlesinger L., “Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten”, Journal für die reine und angewandte Mathematik, 141 (1912), 96–145 | Zbl

[2] Fuchs R., “Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singularen Stellen”, Mathematische Annalen, 63 (1907), 301–321 | DOI | MR | Zbl

[3] Sato M., Dzimbo M., Miva T., Golonomnye kvantovye polya, Mir, M., 1980 | MR

[4] Jimbo M., Kashiwara M., Miwa T., “Monodromy preserving deformation of ramified solutions to $(\Delta-m^2)u=0$”, J. Math. Phys., 22:11 (1981), 2581–2587 | DOI | MR | Zbl

[5] Ueno K., Monodromy preserving deformation of linear differential equations with irregular singular points, Preprint. RIMS-301, RIMS, Kyoto, 1979 | MR

[6] Ueno K., Monodromv preserving deformations and its application to soliton theory, Preprint. RIMS-302, RIMS, Kyoto, 1979 | MR

[7] Jimbo M., Miwa T., Deformation of linear ordinary differental equations. I, Preprint. RIMS-315, RIMS, Kyoto, 1980

[8] Jimbo M., Miwa T., Deformation of linear ordinary differential equations. II, Preprint. RIMS-316, RIMS, Kyoto, 1980 | MR

[9] Jimbo M., Miwa T., Ueno K., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I, Preprint. RIMS-319, RIMS, Kyoto, 1980

[10] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II, Preprint. RIMS-327, RIMS, Kyoto, 1980

[11] Jimbo M., Miwa T., Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III, Preprint. RIMS-344, RIMS, Kyoto, 1980

[12] Flaschka H., Newell A. C., “Monodromy and spectrum preserving deformation”, Commun. Math. Phys., 76 (1980), 65–116 | DOI | MR | Zbl

[13] Its A. R., “Asimptotika reshenii nelineinogo uravneniya Shredingera i izomonodromnye deformatsii sistem lineinykh differentsialnykh uravnenii”, Dokl. AN SSSR, 261:1 (1981), 14–18 | MR | Zbl

[14] Its A. R., Petrov V. E., “Izomonodromnye resheniya uravneniya Sine-Gordon i vremennaya asimptotika ego bystroubyvayuschikh reshenii”, Dokl. AN SSSR, 265:6 (1982), 1302–1304 | MR

[15] Its A. R., ““Izomonodromnye” resheniya uravnenii nulevoi krivizny”, Izv. AN SSSR. Ser. matem., 49 (1985), 530–564 | MR

[16] Novokshënov V. Yu., “Metod izomonodromnoi deformatsii i asimptotika tretego transtsendenta Penleve”, Funktsion. analiz i ego pril., 18:3 (1984), 90–91 | MR

[17] Novokshënov V. Yu., “Ob asimptotike obschego veschestvennogo resheniya uravneniya Penleve tretego tipa”, Dokl. AN SSSR, 283:5 (1985), 1161–1165 | MR

[18] Novokshënov V. Yu., “Asimptotika pri $f\to\infty$ resheniya zadachi Koshi dlya dvumernogo obobscheniya tsepochki Tody”, Izv. AN SSSR. Ser. matem., 48 (1984), 372–410 | MR

[19] Ablowitz M. J., Segur H., “Exact Linearization of a Painlevé Transcendent”, Phys. Rev. Lett., 38:20 (1977), 1103–1106 | DOI | MR

[20] Ains E. L., Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939

[21] Gromak V. I., “K teorii uravnenii Penleve”, Differents. uravneniya, 11:2 (1975), 373–376 | MR | Zbl

[22] Gromak V. I., “O privodimosti uravnenii Penleve”, Differents. uravneniya, 20:10 (1984), 1674–1683 | MR | Zbl

[23] Lukashevich N. A., “Elementarnye resheniya nekotorykh uravnenii Penleve”, Differents. uravneniya, 1:6 (1965), 731–735 | Zbl

[24] Gromak V. I., “Ob odnoparametricheskikh semeistvakh reshenii uravnenii Penleve”, Differents. uravneniya, 14:12 (1978), 2131–2135 | MR | Zbl

[25] Bordag L. A., Painlevé equations and their connection with nonlinear evolution equations. Part II, JINR Communication. E5-80-477, JINR, Dubna, 1980

[26] Golubev V. V., “K' teorii uravnenii Painlevé”, Matem. sb., 28:2 (1912), 323–349 | MR | Zbl

[27] Takano K., “A2 – Parameter Family of Solutions of Painlevé Equation (V) near the Point at Infinity”, Funkcialaj Ekvacioj, 26:1 (1983), 79–113 | MR | Zbl

[28] Kimura H., “The Construction of a General Solution of a Hamiltonian System with Regular Type Singularity and Its Application to Painlevé Equations”, Annali di Matematica Pure ed Applicata. Serie Quarta, CXXXIV (1983), 363–392 | DOI | MR

[29] Abdullaev A. S., “Asimptotika reshenii obobschennogo uravneniya Sine-Gordona, tretego uravneniya Penleve i uravneniya Dalambera”, Dokl. AN SSSR, 280:2 (1985), 265–268 | MR | Zbl

[30] McCoy B. M., Tang Sh., Connection Formulae for Painlevé V. Functions, Preprint ITP. ITP-SB-85-3, ITP, New York, 1985 | MR

[31] McCoy B. M., Tang Sh., Connection Formulae for Painlevé V Functions II. The $\delta$ function Bose Gas Problem, Preprint ITP, ITP-SB-85-20, LTP, New York, 1985 | MR

[32] McCoy B. M., Tang Sh., Connection Formulae for Painlevé Functions, Preprint ITP. ITP-SB-85-19, ITP, New York, 1985 | MR

[33] Bordag L. A., Kitaev A. V., Preobrazovaniya reshenii tretego i pyatogo uravnenii Penleve i ikh chastnye resheniya, Soobscheniya OIYaI. R5–85–740, OIYaI, Dubna, 1985

[34] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1968

[35] Fedoryuk M. V., Asimptoticheskie metody dlya lineinykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1983 | MR | Zbl

[36] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 1, Nauka, M., 1973

[37] Beitmen G., Erdeii A., Vysshie transtsendentnye funktsii, t. 2, Nauka, M., 1974

[38] Gromak V. I., Tsegelnik V. V., “Nelineinye dvumernye modeli teorii polya i uravneniya Penleve”, TMF, 55:2 (1983), 189–196 | MR | Zbl

[39] Ibragimov N. X., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[40] Boiti M., Pempinelli F., “Nonlinear Schrödinger Equation, Bäcklund Transformations and Painlevé Transcendents”, Nuovo Cimento, 59B:1 (1980), 40–58 | MR

[41] Salihoglu S., “The two-dimensional $O(N)$ nonlinear $\sigma$-model and the fifth Painlevé Transcendent”, Phys. Lett. B, 89:3, 4 (1980), 367–368 | DOI | MR

[42] Fokas A. S., Ablowitz M. J., “On unified approach to transformations and elementary solutions of Painlevé equations”, J. Math. Phys., 23:11 (1982), 2033–2042 | DOI | MR | Zbl