Approximation in $L_p$ by polynomials in the Walsh system
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 385-402

Voir la notice de l'article provenant de la source Math-Net.Ru

For $0$ and $q=1$, $1\le p\infty$ we calculate the quantity $$ \varkappa_{2^n}(L_p,L_q)=\sup_{f\in L_p}\frac{E_{2^n}(f)_q} {\dot\omega\bigl(\frac1{2^n},f\bigr)_p}\,, $$ where $E_{2^n}(f)_q$ is the best $L_q$-approximation of the function $f$ by Walsh polynomials of order $2^n$ and $$ \dot\omega(\delta,f)_p=\sup_{0\delta}\|f(x\dot+t)-f(x)\|_p $$ is the dyadic modulus of continuity of $f$ in $L_p$ determined by the operation $\dot+$ of addition of numbers from the interval $[0,1]$ in the dyadic system. Bibliography: 21 titles.
@article{SM_1989_62_2_a4,
     author = {V. I. Ivanov},
     title = {Approximation in $L_p$ by polynomials in the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {385--402},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/}
}
TY  - JOUR
AU  - V. I. Ivanov
TI  - Approximation in $L_p$ by polynomials in the Walsh system
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 385
EP  - 402
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/
LA  - en
ID  - SM_1989_62_2_a4
ER  - 
%0 Journal Article
%A V. I. Ivanov
%T Approximation in $L_p$ by polynomials in the Walsh system
%J Sbornik. Mathematics
%D 1989
%P 385-402
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/
%G en
%F SM_1989_62_2_a4
V. I. Ivanov. Approximation in $L_p$ by polynomials in the Walsh system. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 385-402. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/