Approximation in $L_p$ by polynomials in the Walsh system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 385-402
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			For $0$ and $q=1$, $1\le p\infty$ we calculate the quantity 
$$
\varkappa_{2^n}(L_p,L_q)=\sup_{f\in L_p}\frac{E_{2^n}(f)_q}
{\dot\omega\bigl(\frac1{2^n},f\bigr)_p}\,,
$$
where $E_{2^n}(f)_q$ is the best $L_q$-approximation of the function $f$ by Walsh polynomials of order $2^n$ and 
$$
\dot\omega(\delta,f)_p=\sup_{0\delta}\|f(x\dot+t)-f(x)\|_p
$$
is the dyadic modulus of continuity of $f$ in $L_p$ determined by the operation $\dot+$ of addition of numbers from the interval $[0,1]$ in the dyadic system. 
Bibliography: 21 titles.
			
            
            
            
          
        
      @article{SM_1989_62_2_a4,
     author = {V. I. Ivanov},
     title = {Approximation in $L_p$ by polynomials in the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {385--402},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/}
}
                      
                      
                    V. I. Ivanov. Approximation in $L_p$ by polynomials in the Walsh system. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 385-402. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/
