and $q=1$, $1\le p<\infty$ we calculate the quantity $$ \varkappa_{2^n}(L_p,L_q)=\sup_{f\in L_p}\frac{E_{2^n}(f)_q} {\dot\omega\bigl(\frac1{2^n},f\bigr)_p}\,, $$ where $E_{2^n}(f)_q$ is the best $L_q$-approximation of the function $f$ by Walsh polynomials of order $2^n$ and $$ \dot\omega(\delta,f)_p=\sup_{0<t<\delta}\|f(x\dot+t)-f(x)\|_p $$ is the dyadic modulus of continuity of $f$ in $L_p$ determined by the operation $\dot+$ of addition of numbers from the interval $[0,1]$ in the dyadic system. Bibliography: 21 titles.
@article{SM_1989_62_2_a4,
author = {V. I. Ivanov},
title = {Approximation in $L_p$ by polynomials in the {Walsh} system},
journal = {Sbornik. Mathematics},
pages = {385--402},
year = {1989},
volume = {62},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/}
}
V. I. Ivanov. Approximation in $L_p$ by polynomials in the Walsh system. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 385-402. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a4/
[1] Watari C., “Best approximation by Walsh polynomials”, Tohoku Math. J., 151:1 (1963), 1–5 | DOI | MR
[2] Efimov A. V., “O nekotorykh approksimativnykh svoistvakh periodicheskikh multiplikativnykh ortonormirovannykh sistem”, Matem. sb., 69(111) (1966), 354–370 | MR | Zbl
[3] Vilenkin N. Ya., Rubinshtein A. I., “Odna teorema S. B. Stechkina ob absolyutnoi skhodimosti i ryady po sistemam kharakterov nul-mernykh abelevykh grupp”, Izv. vuzov. Matematika, 1975, no. 9, 3–9 | MR | Zbl
[4] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., Rubinshtein A. I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nul-mernykh gruppakh, Elm, Baku, 1981
[5] Kashin B. S, Saakyan A. A., Ortogonalnye ryady, Nauka, M., 1984 | MR | Zbl
[6] Rubinshtein A. I., “O modulyakh nepreryvnosti i nailuchshikh priblizheniyakh v $L_p$ funktsii, predstavimykh lakunarnymi ryadami Uolsha”, Izv. vuzov. Matematika, 1983, no. 5, 61–68 | MR
[7] Fridli S., “On the modulus of continuity with respect to functions defined on Vilenkin groups”, Acta Math. Hung., 45 (1985), 393–396 | DOI | MR | Zbl
[8] Krotov V. G., Osvald P., Storozhenko E. A., “Pryamye i obratnye teoremy tipa Dzheksona v prostranstvakh $L_p$, $0
1$”, Matem. sb., 98:3 (1975), 395–415 | MR | Zbl[9] Williams L. R., Wells J. H., “$L_p$ inequalities”, J. Math. Anal. Appl., 64:3 (1978), 518–529 | DOI | MR | Zbl
[10] Benedeck A., Panzone R., “The spaces $L_p$ with mixed norm”, Duke Math. J., 28 (1961), 301–324 | DOI | MR
[11] Ulyanov P. L., “Teoremy vlozheniya i sootnosheniya mezhdu nailuchshimi priblizheniyami (modulyami nepreryvnosti) v raznykh metrikakh”, Matem. sb., 81:1 (1970), 104–131
[12] Brillhart J., Morton P., “Über summen von Rudin–Shapiroschen kooffizienten”, Illinois J. Math., 22 (1978), 126–148 | MR | Zbl
[13] Olevskii A. M., “O prodolzhenii posledovatelnosti funktsii do polnoi ortonormirovannoi sistemy”, Matem. zametki, 6:6 (1969), 737–747 | MR | Zbl
[14] Berdyshev V. I., “O teoreme Dzheksona v $L_p$”, Tp. MIAN, 88, 1967, 3–16 | Zbl
[15] Chernykh N. I., “O nailuchshem priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami v $L_2$”, Matem. zametki, 2:5 (1967), 513–522
[16] Korneichuk N. P., Splainy v teorii priblizheniya, Nauka, M., 1984 | MR
[17] Tikhomirov V. M., Nekotorye voprosy teorii priblizhenii, MGU, M., 1984
[18] Khardi G. G., Litlvud D. E., Polia G., Neravenstva, IL, M., 1948
[19] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63:3 (1964), 356–391
[20] Golubov B. I., “Nailuchshie priblizheniya funktsii v metrike $L_p$ polinomami Khaara i Uolsha”, Matem. sb., 87:2 (1972), 254–274 | MR | Zbl
[21] Ciesielski Z., “Properties of the orthonormal Franklin system”, Studia Math., 27:3 (1966), 289–323 | MR | Zbl