The topology of integral submanifolds of completely integrable Hamiltonian systems
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 373-383
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the class $(X)$ of three-dimensional closed compact manifolds that are constant energy surfaces of integrable (by means of a Bott integral) Hamiltonian systems coincides precisely with the class $(Q)$ of three-dimensional orientable manifolds admitting decomposition into “circular handles”. Fomenko previously proved the inclusion $(X)\subset(Q)$. An explicit geometric description is also given for modifications of Liouville tori in neighborhoods of nonorientable critical submanifolds of the moment mapping of an integrable system.
Figures: 1.
Bibliography: 20 titles.
@article{SM_1989_62_2_a3,
author = {A. V. Brailov and A. T. Fomenko},
title = {The topology of integral submanifolds of completely integrable {Hamiltonian} systems},
journal = {Sbornik. Mathematics},
pages = {373--383},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/}
}
TY - JOUR AU - A. V. Brailov AU - A. T. Fomenko TI - The topology of integral submanifolds of completely integrable Hamiltonian systems JO - Sbornik. Mathematics PY - 1989 SP - 373 EP - 383 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/ LA - en ID - SM_1989_62_2_a3 ER -
A. V. Brailov; A. T. Fomenko. The topology of integral submanifolds of completely integrable Hamiltonian systems. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 373-383. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/