The topology of integral submanifolds of completely integrable Hamiltonian systems
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 373-383

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the class $(X)$ of three-dimensional closed compact manifolds that are constant energy surfaces of integrable (by means of a Bott integral) Hamiltonian systems coincides precisely with the class $(Q)$ of three-dimensional orientable manifolds admitting decomposition into “circular handles”. Fomenko previously proved the inclusion $(X)\subset(Q)$. An explicit geometric description is also given for modifications of Liouville tori in neighborhoods of nonorientable critical submanifolds of the moment mapping of an integrable system. Figures: 1. Bibliography: 20 titles.
@article{SM_1989_62_2_a3,
     author = {A. V. Brailov and A. T. Fomenko},
     title = {The topology of integral submanifolds of completely integrable {Hamiltonian} systems},
     journal = {Sbornik. Mathematics},
     pages = {373--383},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/}
}
TY  - JOUR
AU  - A. V. Brailov
AU  - A. T. Fomenko
TI  - The topology of integral submanifolds of completely integrable Hamiltonian systems
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 373
EP  - 383
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/
LA  - en
ID  - SM_1989_62_2_a3
ER  - 
%0 Journal Article
%A A. V. Brailov
%A A. T. Fomenko
%T The topology of integral submanifolds of completely integrable Hamiltonian systems
%J Sbornik. Mathematics
%D 1989
%P 373-383
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/
%G en
%F SM_1989_62_2_a3
A. V. Brailov; A. T. Fomenko. The topology of integral submanifolds of completely integrable Hamiltonian systems. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 373-383. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a3/