Comparison theorems for solutions of hyperbolic equations
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 349-371 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to the study of uniform quasiasymptotics of the solution of the second mixed problem for the uniformly hyperbolic equation \begin{equation} \begin{gathered} p(x)u_{tt}-\sum^n_{i,j=1}(a_{ij}(x)u_{x_i})_{x_j}=f(t,x),\qquad t>0,\quad x\in\Omega, \\ \frac{\partial u}{\partial N} \biggl|_{\partial\Omega}=0,\quad u|_{t=0}=\varphi(x),\quad u_t|_{t=0}=\psi(x), \end{gathered} \end{equation} where $\Omega$ is an unbounded domain in $\mathbf R_n$ which satisfies certain conditions, the main one of which is a condition of “isoperimetric” type, and $N$ is the conormal to $\partial\Omega$. One of the results is a comparison theorem in which necessary and sufficient conditions are established for the existence of uniform quasiasymptotics of the solution of problem (1) if the uniform quasiasymptotics is known to exist for the solution of a problem differing from problem (1) only by the coefficient of the second derivative with respect to time. Bibliography: 22 titles.
@article{SM_1989_62_2_a2,
     author = {A. K. Gushchin and V. P. Mikhailov},
     title = {Comparison theorems for solutions of hyperbolic equations},
     journal = {Sbornik. Mathematics},
     pages = {349--371},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a2/}
}
TY  - JOUR
AU  - A. K. Gushchin
AU  - V. P. Mikhailov
TI  - Comparison theorems for solutions of hyperbolic equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 349
EP  - 371
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a2/
LA  - en
ID  - SM_1989_62_2_a2
ER  - 
%0 Journal Article
%A A. K. Gushchin
%A V. P. Mikhailov
%T Comparison theorems for solutions of hyperbolic equations
%J Sbornik. Mathematics
%D 1989
%P 349-371
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a2/
%G en
%F SM_1989_62_2_a2
A. K. Gushchin; V. P. Mikhailov. Comparison theorems for solutions of hyperbolic equations. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 349-371. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a2/

[1] Zavyalov B. I., “Avtomodelnaya asimptotika elektromagnitnykh form-faktorov i povedenie ikh Fure-obrazov v okrestnosti svetovogo konusa”, TMF, 17:2 (1973), 178–188

[2] Drozhzhinov Yu. N., Zavyalov B. I., “Kvaziasimptotika obobschennykh funktsii i tauberovy teoremy v kompleksnoi oblasti”, Matem. sb., 102(144) (1977), 372–390 | Zbl

[3] Drozhzhinov Yu. N., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii s nositelyami v konuse”, Matem. sb., 108(150) (1979), 78–90 | MR | Zbl

[4] Drozhzhinov Yu. N., Zavyalov B. I., “Mnogomernye tauberovy teoremy sravneniya dlya obobschennykh funktsii v konusakh”, Matem. sb., 126(168) (1985), 515–542 | MR | Zbl

[5] Vladimirov V. S, Drozhzhinov Yu. N., Zavyalov B. I., “Tauberovy teoremy dlya obobschennykh funktsii i ikh primeneniya”, Tr. MIAN, 175, 1986, 103–112 | MR | Zbl

[6] Vladimirov V. S, Drozhzhinov Yu. N., Zavyalov B. I., Mnogomernye tauberovy teoremy dlya obobschennykh funktsii, Nauka, M., 1986 | MR

[7] Guschin A. K., Mikhailov V. P., “O ravnomernoi stabilizatsii resheniya zadachi Koshi dlya giperbolicheskogo uravneniya vtorogo poryadka”, Tr. MIAN, 166, 1984, 76–90 | Zbl

[8] Kazarinoff N., Ritt N., “On the behaviour of solution of wave equation for $t\to\infty$”, Arch. Rat. Mech. and Analysis, 5:1 (1960), 908–918 | MR

[9] Mikhailov V. P., “Ob asimptoticheskom povedenii pri $t\to\infty$ reshenii nekotorykh nestatsionarnykh granichnykh zadach”, DAN SSSR, 162:3 (1965), 506–509

[10] Eidus D. M., “Printsip predelnoi amplitudy”, UMN, 24:3 (1969), 91–156 | MR

[11] Guschin A. K., Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya”, Differents. uravneniya, 7:2 (1971), 297–311 | Zbl

[12] Guschin A. K., Mikhailov V. P., “O stabilizatsii resheniya zadachi Koshi dlya parabolicheskogo uravneniya s odnoi prostranstvennoi peremennoi”, Tr. MIAN, 112, 1971, 181–202 | Zbl

[13] Kochubei A. N., “O stabilizatsii reshenii dissipativnykh giperbolicheskikh uravnenii”, Differents. uravneniya, 22:10 (1986), 1771–1778 | MR

[14] Guschin A. K., Mikhailov V. P., “O ravnomernoi kvazistabilizatsii resheniya zadachi Koshi dlya giperbolicheskogo uravneniya”, DAN SSSR, 276:3 (1984), 532–535 | MR | Zbl

[15] Mikhailov Yu. A., “O ravnomernoi kvazistabilizatsii reshenii vtoroi smeshannoi zadachi dlya giperbolicheskogo uravneniya”, DAN SSSR, 287:1 (1986), 45–49 | MR

[16] Mikhailov Yu. A., “O ravnomernoi kvazistabilizatsii resheniya vtoroi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 129(171) (1986), 232–251

[17] Guschin A. K., “Ob otsenkakh reshenii kraevykh zadach dlya parabolicheskogo uravneniya vtorogo poryadka”, Tr. MIAN, 126, 1973, 5–45 | Zbl

[18] Guschin A. K., Mikhailov V. P., Mikhailov Yu. A., “O ravnomernoi stabilizatsii reshenii vtoroi smeshannoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 128(170) (1985), 147–168 | MR | Zbl

[19] Guschin A. K., Mikhailov V. P., “O ravnomernoi kvaziasimptotike reshenii vtoroi smeshannoi zadachi dlya giperbolicheskogo uravneniya”, Matem. sb., 131(173) (1986), 419–437 | Zbl

[20] Guschin A. K, Mikhailov V. P., “O ravnomernoi kvaziasimptotike resheniya zadachi Koshi dlya giperbolicheskogo uravneniya”, DAN SSSR, 287:1 (1986), 37–40 | MR

[21] Zemanian A. H., Realizability theory for continuous linear systems, Acad. press, N.Y., L., 1972 | MR | Zbl

[22] Gorbachuk V. I., Gorbachuk M. L., Granichnye zadachi dlya differentsialno-operatornykh uravnenii, Nauk. dumka, Kiev, 1984 | MR | Zbl