On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions are obtained on the potential $V$ of the Schrödinger operator $-\Delta-V(x)$ under which the negative spectrum of this operator consists of no more than $N$ eigenvalues. In many cases these conditions are sharp. All proofs are presented in their entirety and are completely elementary.
Bibliography: 8 titles.
@article{SM_1989_62_2_a13,
author = {Yu. V. Egorov and V. A. Kondrat'ev},
title = {On an estimate of the number of points of the negative spectrum of the {Schr\"odinger} operator},
journal = {Sbornik. Mathematics},
pages = {551--566},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/}
}
TY - JOUR AU - Yu. V. Egorov AU - V. A. Kondrat'ev TI - On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator JO - Sbornik. Mathematics PY - 1989 SP - 551 EP - 566 VL - 62 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/ LA - en ID - SM_1989_62_2_a13 ER -
Yu. V. Egorov; V. A. Kondrat'ev. On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/