On an estimate of the number of points of the negative spectrum of the Schrödinger operator
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Conditions are obtained on the potential $V$ of the Schrödinger operator $-\Delta-V(x)$ under which the negative spectrum of this operator consists of no more than $N$ eigenvalues. In many cases these conditions are sharp. All proofs are presented in their entirety and are completely elementary. Bibliography: 8 titles.
@article{SM_1989_62_2_a13,
     author = {Yu. V. Egorov and V. A. Kondrat'ev},
     title = {On an estimate of the number of points of the negative spectrum of the {Schr\"odinger} operator},
     journal = {Sbornik. Mathematics},
     pages = {551--566},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
TI  - On an estimate of the number of points of the negative spectrum of the Schrödinger operator
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 551
EP  - 566
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/
LA  - en
ID  - SM_1989_62_2_a13
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%T On an estimate of the number of points of the negative spectrum of the Schrödinger operator
%J Sbornik. Mathematics
%D 1989
%P 551-566
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/
%G en
%F SM_1989_62_2_a13
Yu. V. Egorov; V. A. Kondrat'ev. On an estimate of the number of points of the negative spectrum of the Schrödinger operator. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/

[1] Rid M., Saimon B., Analiz operatorov, Mir, M., 1982 | MR

[2] Fefferman Ch., “The uncertainty principle”, Bull. AMS., 9:2 (1983), 1–78 | DOI | MR

[3] Kerman R., Sawyer G., “Weighted norm inequalities for potentials with applications to Schrödinger operators, Fourier transforms, and Carleson measures”, Bull. Ams., 12:1 (1985), 112–116 | DOI | MR | Zbl

[4] Mazya V. G., Prostranstva Soboleva S. L., Izd-vo LGU, L., 1985

[5] Berezin F. A., Shubin M. A., Uravnenie Shredingera, Izd-vo MGU, M., 1983 | MR

[6] Mikhlin S. G., Lineinye uravneniya v chastnykh proizvodnykh, Vysshaya shkola, M., 1977 | MR

[7] Mazya V. G., “K teorii mnogomernogo operatora Shredingera”, Izv. AN SSSR. Ser. matem., 28 (1964), 1145–1172

[8] Birman M. Sh., “O spektre singulyarnykh granichnykh zadach”, Matem. sb., 55(97) (1961), 125–174 | MR | Zbl