On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are obtained on the potential $V$ of the Schrödinger operator $-\Delta-V(x)$ under which the negative spectrum of this operator consists of no more than $N$ eigenvalues. In many cases these conditions are sharp. All proofs are presented in their entirety and are completely elementary. Bibliography: 8 titles.
@article{SM_1989_62_2_a13,
     author = {Yu. V. Egorov and V. A. Kondrat'ev},
     title = {On an estimate of the number of points of the negative spectrum of the {Schr\"odinger} operator},
     journal = {Sbornik. Mathematics},
     pages = {551--566},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/}
}
TY  - JOUR
AU  - Yu. V. Egorov
AU  - V. A. Kondrat'ev
TI  - On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 551
EP  - 566
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/
LA  - en
ID  - SM_1989_62_2_a13
ER  - 
%0 Journal Article
%A Yu. V. Egorov
%A V. A. Kondrat'ev
%T On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator
%J Sbornik. Mathematics
%D 1989
%P 551-566
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/
%G en
%F SM_1989_62_2_a13
Yu. V. Egorov; V. A. Kondrat'ev. On an estimate of the number of points of the negative spectrum of the Schr\"odinger operator. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 551-566. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a13/