Branching diffusion processes and systems of reaction-diffusion differential equations
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 525-539 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Systems of reaction-diffusion differential equations of the form \begin{equation} \frac{\partial u_k}{\partial t}=L_ku_k+f_k(t,x,u),\quad x\in D\subseteq R^r,\ t>0,\ u=(u_1,\dots,u_n),\,1\leqslant k\leqslant n, \end{equation} are considered. Under certain special conditions on the nonlinear terms $f_k$ the solutions of the Cauchy problem and of mixed problems for systems of the type (1) have a representation in the form of an average value of a suitable functional of the sample paths of a corresponding branching process with diffusion. This representation is given, and it is used together with a direct probability investigation of the branching process with diffusion to obtain results on the behavior of solutions of certain problems with a small parameter for systems of the type (1). Bibliography: 12 titles.
@article{SM_1989_62_2_a11,
     author = {R. G. Safaryan},
     title = {Branching diffusion processes and systems of reaction-diffusion differential equations},
     journal = {Sbornik. Mathematics},
     pages = {525--539},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a11/}
}
TY  - JOUR
AU  - R. G. Safaryan
TI  - Branching diffusion processes and systems of reaction-diffusion differential equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 525
EP  - 539
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a11/
LA  - en
ID  - SM_1989_62_2_a11
ER  - 
%0 Journal Article
%A R. G. Safaryan
%T Branching diffusion processes and systems of reaction-diffusion differential equations
%J Sbornik. Mathematics
%D 1989
%P 525-539
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a11/
%G en
%F SM_1989_62_2_a11
R. G. Safaryan. Branching diffusion processes and systems of reaction-diffusion differential equations. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 525-539. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a11/

[1] Skorokhod A. V., “Vetvyaschiesya diffuzionnye protsessy”, Teoriya veroyatnostei i ee primeneniya, IX:3 (1964), 492–497

[2] Venttsel A. D., Freidlin M. I., Fluktuatsii v dinamicheskikh sistemakh pod deistviem malykh sluchainykh vozmuschenii, Nauka, M., 1979 | MR | Zbl

[3] Sevastyanov B. A., Vetvyaschiesya protsessy, Nauka, M., 1971 | MR

[4] Kharris T. E., Teoriya vetvyaschikhsya sluchainykh protsessov, Mir, M., 1966

[5] Sarafyan V. V., “Markovskie protsessy i kraevye zadachi dlya odnogo klassa sistem”, DAN ArmSSR. Ser. matem., 81:4 (1985), 134–137 | MR

[6] Dynkin E. B., Markovskie protsessy, Fizmatgiz, M., 1963 | MR

[7] Mc Kean H. P., “Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piskunov”, Comm. Pure Appl. Math., 28 (1975), 323–331 | DOI | MR

[8] Bramson M. D., “Maximal displacement of Branching Brownian motion”, Comm. Pure Appl. Math., 31 (1978), 531–581 | DOI | MR | Zbl

[9] Smoller J., Shock Waves and Reaction–Diffusion Equation, Springer-Verlag, N.-Y., Berlin, Heidelberg, 1983 | MR | Zbl

[10] Anderson R. F., Orey S., “Small random perturbations of dinamical systems with reflecting boundary”, Nagoya Math. J., 60 (1976), 189–216 | MR | Zbl

[11] Aronson D. G., Weinberger H. F., “Nonlinear diffusion in population genetics, combustion and nerve propagation, in Partial Differential Equations and Related Topics”, Lect. Notes in Math., no. 446, 1975, 5–49 | MR | Zbl

[12] Fife P. C., Mc Leod J. B., The approach of solutions of nonlinear diffusion equations to travelling wave front solutions, MRS Technical Summary Report No. 1736, 1977