Equilibrium distributions and degree of rational approximation of
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348
Voir la notice de l'article provenant de la source Math-Net.Ru
A theorem is proved on the degree of rational approximation of sequences of analytic functions given by Cauchy-type integrals of the form
$$
f_n(z)=\oint_F\Phi_n(t)f(t)(t-z)^{-1}\,dt,\qquad z\in E.
$$
The theorem is formulated in terms connected with the equilibrium distribution of the charge on the plates of a capacitor $(E,F)$ under the assumption that an external field $\varphi=\lim_{n\to\infty}(2n)^{-1}\log|\Phi_n|^{-1}$ acts on the plate $F$, and this plate satisfies a certain symmetry condition in the field $\varphi$. The theorem is used to solve the problem of the degree of rational approximation of the function $e^{-x}$ on $[0,+\infty)$.
Bibliography: 44 titles.
@article{SM_1989_62_2_a1,
author = {A. A. Gonchar and E. A. Rakhmanov},
title = {Equilibrium distributions and degree of rational approximation of},
journal = {Sbornik. Mathematics},
pages = {305--348},
publisher = {mathdoc},
volume = {62},
number = {2},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/}
}
A. A. Gonchar; E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/