Equilibrium distributions and degree of rational approximation of
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem is proved on the degree of rational approximation of sequences of analytic functions given by Cauchy-type integrals of the form $$ f_n(z)=\oint_F\Phi_n(t)f(t)(t-z)^{-1}\,dt,\qquad z\in E. $$ The theorem is formulated in terms connected with the equilibrium distribution of the charge on the plates of a capacitor $(E,F)$ under the assumption that an external field $\varphi=\lim_{n\to\infty}(2n)^{-1}\log|\Phi_n|^{-1}$ acts on the plate $F$, and this plate satisfies a certain symmetry condition in the field $\varphi$. The theorem is used to solve the problem of the degree of rational approximation of the function $e^{-x}$ on $[0,+\infty)$. Bibliography: 44 titles.
@article{SM_1989_62_2_a1,
     author = {A. A. Gonchar and E. A. Rakhmanov},
     title = {Equilibrium distributions and degree of rational approximation of},
     journal = {Sbornik. Mathematics},
     pages = {305--348},
     year = {1989},
     volume = {62},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/}
}
TY  - JOUR
AU  - A. A. Gonchar
AU  - E. A. Rakhmanov
TI  - Equilibrium distributions and degree of rational approximation of
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 305
EP  - 348
VL  - 62
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/
LA  - en
ID  - SM_1989_62_2_a1
ER  - 
%0 Journal Article
%A A. A. Gonchar
%A E. A. Rakhmanov
%T Equilibrium distributions and degree of rational approximation of
%J Sbornik. Mathematics
%D 1989
%P 305-348
%V 62
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/
%G en
%F SM_1989_62_2_a1
A. A. Gonchar; E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/

[1] Gonchar A. A., Rakhmanov E. A., “Ravnovesnaya mera i raspredelenie nulei ekstremalnykh mnogochlenov”, Matem. sb., 125(167) (1984), 117–127 | MR

[2] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN SSSR, 157, 1981, 31–48 | MR | Zbl

[3] Gonchar A. A., Rakhmanov E. A., “O zadache ravnovesiya dlya vektornykh potentsialov”, UMN, 40:4 (1985), 155–156 | MR | Zbl

[4] Gonchar A. A., Lopes G., “O teoreme Markova dlya mnogotochechnykh approksimatsii Pade”, Matem. sb., 105(147) (1978), 512–524 | MR | Zbl

[5] Rakhmanov E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov, ortogonalnykh na veschestvennoi osi”, Matem. sb., 119(161) (1982), 169–203 | MR

[6] Mhaskar H. N., Saff E. B., “Where does the sup norm of a weighted polynomial live?”, Constr. approx., 1 (1985), 71–91 | DOI | MR | Zbl

[7] Nuttall J., “Asymptotics of diagonal Hermite–Padé polynomials”, J. Appr. Theory, 42:4 (1984), 299–386 | DOI | MR | Zbl

[8] Stahl H., “Orthogonal Polynomials with complex valued weight function. I. II”, Constr. approx., 2 (1986), 225–240, 241–251 | DOI | MR | Zbl

[9] Gonchar A. A., “Ratsionalnye approksimatsii analiticheskikh funktsii”, Tr. mezhdunarodnogo kongressa matematikov (Berkli, 1986), 1987

[10] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[11] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[12] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii analiticheskikh funktsii”, Tr. MIAN SSSR, 166, 1984, 52–60 | MR | Zbl

[13] Gonchar A. A., “O skorosti ratsionalnoi approksimatsii nekotorykh analiticheskikh funktsii”, Matem. sb., 105(147) (1978), 147–163 | MR | Zbl

[14] Gonchar A. A., “Skorost ratsionalnoi approksimatsii i svoistvo odnoznachnosti analiticheskikh funktsii v okrestnosti izolirovannoi osoboi tochki”, Matem. sb., 94(136) (1974), 266–282

[15] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[16] Dzhenkins D. A., Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962

[17] Kuzmina G. V., Moduli semeistv krivykh i kvadratichnye differentsialy, Tr MIAN, 139, Nauka, L., 1980 | MR

[18] Nuttall J., “Sets of minimal capacity, Padé approximants and the bubble problem”, Bifurcation phenomena in Mathematical physics and related topics, eds. C. Bardos, D. Bessis, Reidel, Dordrecht, 1980, 185–201

[19] Gonchar A. A., “O zadachakh E. I. Zolotareva, svyazannykh s ratsionalnymi funktsiyami”, Matem. sb., 78(120) (1969), 640–654 | Zbl

[20] Stahl H., “Structure of extremal domains associated with an analytic function”, Complex variables, 4 (1985), 339–356 | MR

[21] Stahl H., “A note on the three conjectures by Gonchar on rational approximation”, J. Appr. Theory., 50:1 (1987), 3–7 | DOI | MR | Zbl

[22] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR

[23] Bagby T., “On interpolation by rational functions”, Duke Math. J., 36 (1969), 95–104 | DOI | MR | Zbl

[24] Gonchar A. A., “Rational approximation of analytic functions”, Linear and complex analysis problem book, Lect. Notes Math., 1043, eds. V. P. Havin, S. V. Hruscev, N. K. Nikol'sci, Springer-Verlag, Berlin, 1984, 471–474 | MR

[25] Parfenov O. G., “Otsenki singulyarnykh chisel operatora vlozheniya Karlesona”, Matem. sb., 131(173) (1986), 501–518 | MR

[26] Adamyan V. M., Arov D. Z., Krein N. G., “O beskonechnykh gankelevykh matritsakh i obobschennykh zadachakh Karateodori–Feiera i F. Rissa”, Funktsion. analiz, 2:1 (1968), 1–19 | MR | Zbl

[27] Adamyan V. M., Arov D. Z., Krein M. G., “Beskonechnye gankelevy matritsy i obobschennye zadachi Karateodori–Feiera i Shura”, Funktsion. analiz, 2:4 (1968), 1–17 | Zbl

[28] Adamyan V. M., Arov D. Z., Krein M. G., “Analiticheskie svoistva par Shmidta, gankelevy operatory i obobschennaya zadacha Shura–Tagaki”, Matem. sb., 86(128) (1971), 34–75

[29] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1976

[30] Peller V. V., “Operatory Gankelya klassa $\mathfrak{G}_p$ i ikh prilozheniya”, Matem. sb., 113(157) (1980), 538–581 | MR | Zbl

[31] Peller V. V., Khruschev S. V., “Operatory Gankelya, nailuchshie priblizheniya i statsionarnye gaussovskie protsessy”, UMN, 37:1 (1982), 53–124 | MR | Zbl

[32] Varga R. S., Topics in polynomial and rational interpolation and approximation, Séminaire de Mathématiques Supérieures [Seminar on Higher Mathematics], 81, Presses de l'Université de Montréal, Montreal, Que., 1982 | MR | Zbl

[33] Varga R. S., “Scientific computation on some mathematical cojectures”, Approximation theory V, eds. S. K. Chui., L. L. Schumaker, J. D. Ward, Academic Press, 1986, 191–209 | MR

[34] Varga R., Funktsionalnyi analiz i teoriya approksimatsii v chislennom analize, Mir, M., 1974 | MR | Zbl

[35] Cody M. J., Meinardus G., Varga R. S., “Chebyshev rational approximation to $e^{-x}$ on $[0,+\infty)$ and applications to heat-conduction problems”, J. Appr. Theory., 2 (1969), 50–65 | DOI | MR | Zbl

[36] Schonhage A., “Zur rationalen Approximierbarkeit von $e^{-x}$ uber $[0,+\infty)$”, J. Appr. Theory, 7 (1973), 395–398 | DOI | MR

[37] Saff E. B., Varga R. S., “Some open questions concerning polynomial and rational functions”, Padé and rational approximation, eds. E. B. Saff, R. A. Varga, Academic Press, 1977, 483–488 | MR

[38] Trefethen L. N., Gutknecht M., “The Carathéodory–Fejér method for real rational approximation”, SIAM J. Numer. Anal., 20 (1983), 420–436 | DOI | MR | Zbl

[39] Carpenter A. J., Ruttan A., Varga R. S., “Extended computations on the “1/9” conjecture in rational approximation theory”, Springer Lect. Notes Math., 1105, 1984, 383–411 | MR | Zbl

[40] Opitz H.-U., Scherer K., “On the rational approximation of $e^{-x}$ on $[0,+\infty)$”, Constr. Appr., 1 (1986), 195–216 | DOI | MR

[41] Andersson J. E., “Approximation of $e^{-x}$ by rational functions with concentrated negative poles”, J. Appr. Theory, 32 (1981), 85–95 | DOI | MR | Zbl

[42] Magnus A. P., CFGT determination of Varga's constant “1/9”, Inst. Preprint B-1348, Inst. Math. U.C.L., Belgium, 1986

[43] Akhiezer N. I., Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[44] Halphen G. H., Traité des fonctions elliptiques et de leurs applications I, Gauthier-Villars, Paris, 1886 | Zbl