Equilibrium distributions and degree of rational approximation of
Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348

Voir la notice de l'article provenant de la source Math-Net.Ru

A theorem is proved on the degree of rational approximation of sequences of analytic functions given by Cauchy-type integrals of the form $$ f_n(z)=\oint_F\Phi_n(t)f(t)(t-z)^{-1}\,dt,\qquad z\in E. $$ The theorem is formulated in terms connected with the equilibrium distribution of the charge on the plates of a capacitor $(E,F)$ under the assumption that an external field $\varphi=\lim_{n\to\infty}(2n)^{-1}\log|\Phi_n|^{-1}$ acts on the plate $F$, and this plate satisfies a certain symmetry condition in the field $\varphi$. The theorem is used to solve the problem of the degree of rational approximation of the function $e^{-x}$ on $[0,+\infty)$. Bibliography: 44 titles.
@article{SM_1989_62_2_a1,
     author = {A. A. Gonchar and E. A. Rakhmanov},
     title = {Equilibrium distributions and degree of rational approximation of},
     journal = {Sbornik. Mathematics},
     pages = {305--348},
     publisher = {mathdoc},
     volume = {62},
     number = {2},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/}
}
TY  - JOUR
AU  - A. A. Gonchar
AU  - E. A. Rakhmanov
TI  - Equilibrium distributions and degree of rational approximation of
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 305
EP  - 348
VL  - 62
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/
LA  - en
ID  - SM_1989_62_2_a1
ER  - 
%0 Journal Article
%A A. A. Gonchar
%A E. A. Rakhmanov
%T Equilibrium distributions and degree of rational approximation of
%J Sbornik. Mathematics
%D 1989
%P 305-348
%V 62
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/
%G en
%F SM_1989_62_2_a1
A. A. Gonchar; E. A. Rakhmanov. Equilibrium distributions and degree of rational approximation of. Sbornik. Mathematics, Tome 62 (1989) no. 2, pp. 305-348. http://geodesic.mathdoc.fr/item/SM_1989_62_2_a1/