A multidimensional generalization of the Gauss–Bonnet formula for vector fields in Euclidean space
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 139-144
Cet article a éte moissonné depuis la source Math-Net.Ru
A unit vector field $n$ is considered, defined on some neighborhood $G$ in $(m+1)$-dimensional Euclidean space $E^{m+1}$, for which a formula is established that generalizes the Gauss–Bonnet formula. For this purpose, using the vector field $n$, a map is constructed from an arbitrary hypersurface $F^m\subset G$ onto the $m$-dimensional unit sphere $S^m$. It is proved that the volume element $d\sigma$ of the sphere $S^m$ and the volume element $dV$ of the hypersurface $F^m$ are connected under this map by the relation $d\sigma=(P\nu)dV$, where $\nu$ is the unit normal to $F^m$ and $P$ is a vector of the curvature of the field $n$: $$ P=(-1)^m\{S_mn+S_{m-1}k_1+\dots+k_m\}. $$ Here the $S_i$ are symmetric functions of the principal curvatures of the second kind of the field $n$, $k_1=\nabla_nn,\dots,k_{i+1}=\nabla_{k_i}n,\dots$. The flux of the vector field $P$ through a closed hypersurface $F^m$, divided by the volume of the $m$-dimensional unit sphere $S^m$, equals the degree of the map of $F^m$ to $S^m$ determined by the vector field $n$. For a field $n$, given on all of $E^3$, including the point at infinity, the Hopf invariant is calculated by use of the vector field $P$. Bibliography: 5 titles.
@article{SM_1989_62_1_a8,
author = {Yu. A. Aminov},
title = {A~multidimensional generalization of the {Gauss{\textendash}Bonnet} formula for vector fields in {Euclidean} space},
journal = {Sbornik. Mathematics},
pages = {139--144},
year = {1989},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/}
}
Yu. A. Aminov. A multidimensional generalization of the Gauss–Bonnet formula for vector fields in Euclidean space. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 139-144. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/
[1] Vagner V., “On the geometrical interpretation of the curvature vector of a non-holonomic $V_3^2$ in the three-dimensional Euclidean space”, Matem. sb., 4(46) (1938), 339–356
[2] Aminov Yu. A., “Nekotorye globalnye voprosy geometrii vektornogo polya”, Ukr. geometr. sb., 8 (1970), 3–15 | Zbl
[3] Gantmakher F. R., Teoriya matrits, Nauka, M., 1967 | MR
[4] Frankl F., Pontrjagin L., “Ein Knotensatz mit Anwendung auf die Dimensions theorie”, Math. Ann., 102 (1930), 785–789 | DOI | MR | Zbl
[5] Uitni Kh., Geometricheskaya teoriya integrirovaniya, IL, M., 1960