A~multidimensional generalization of the Gauss--Bonnet formula for vector fields in Euclidean space
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 139-144

Voir la notice de l'article provenant de la source Math-Net.Ru

A unit vector field $n$ is considered, defined on some neighborhood $G$ in $(m+1)$-dimensional Euclidean space $E^{m+1}$, for which a formula is established that generalizes the Gauss–Bonnet formula. For this purpose, using the vector field $n$, a map is constructed from an arbitrary hypersurface $F^m\subset G$ onto the $m$-dimensional unit sphere $S^m$. It is proved that the volume element $d\sigma$ of the sphere $S^m$ and the volume element $dV$ of the hypersurface $F^m$ are connected under this map by the relation $d\sigma=(P\nu)dV$, where $\nu$ is the unit normal to $F^m$ and $P$ is a vector of the curvature of the field $n$: $$ P=(-1)^m\{S_mn+S_{m-1}k_1+\dots+k_m\}. $$ Here the $S_i$ are symmetric functions of the principal curvatures of the second kind of the field $n$, $k_1=\nabla_nn,\dots,k_{i+1}=\nabla_{k_i}n,\dots$. The flux of the vector field $P$ through a closed hypersurface $F^m$, divided by the volume of the $m$-dimensional unit sphere $S^m$, equals the degree of the map of $F^m$ to $S^m$ determined by the vector field $n$. For a field $n$, given on all of $E^3$, including the point at infinity, the Hopf invariant is calculated by use of the vector field $P$. Bibliography: 5 titles.
@article{SM_1989_62_1_a8,
     author = {Yu. A. Aminov},
     title = {A~multidimensional generalization of the {Gauss--Bonnet} formula for vector fields in {Euclidean} space},
     journal = {Sbornik. Mathematics},
     pages = {139--144},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/}
}
TY  - JOUR
AU  - Yu. A. Aminov
TI  - A~multidimensional generalization of the Gauss--Bonnet formula for vector fields in Euclidean space
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 139
EP  - 144
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/
LA  - en
ID  - SM_1989_62_1_a8
ER  - 
%0 Journal Article
%A Yu. A. Aminov
%T A~multidimensional generalization of the Gauss--Bonnet formula for vector fields in Euclidean space
%J Sbornik. Mathematics
%D 1989
%P 139-144
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/
%G en
%F SM_1989_62_1_a8
Yu. A. Aminov. A~multidimensional generalization of the Gauss--Bonnet formula for vector fields in Euclidean space. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 139-144. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a8/