On the regular isometric immersion in $E^3$ of unbounded domains of
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 121-138 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A wide class of unbounded domains is considered in complete Riemannian manifolds of negative curvature that are homeomorphic to planes, and the possibility of immersing them regularly and isometrically in three-dimensional Euclidean space $E^3$ is investigated. Let a metric of the manifold under consideration be given on the parameter plane $xOy$ by a line element of the form $ds^2=dx^2+B^2(x,y)dy^2$, where $B\in C^4(R^2)$. The set $\pi[\omega]=\{(x,y)\in R^2:|x|<\omega(y)\}$ is considered, where $\omega(y)>0$ and is twice continuously differentiable. Let $\pi^*[\omega]$ denote the corresponding domain on the manifold. Then the domain $\pi^*[\omega]$ can be isometrically immersed in $E^3$ by means of a surface of class $C^3$. This result is proved by constructing a smooth solution of a special form of the Gauss–Peterson–Codazzi system of equations in the domain $\pi[\omega]$. Figures: 2. Bibliography: 11 titles.
@article{SM_1989_62_1_a7,
     author = {D. V. Tunitsky},
     title = {On the regular isometric immersion in $E^3$ of unbounded domains of},
     journal = {Sbornik. Mathematics},
     pages = {121--138},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a7/}
}
TY  - JOUR
AU  - D. V. Tunitsky
TI  - On the regular isometric immersion in $E^3$ of unbounded domains of
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 121
EP  - 138
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a7/
LA  - en
ID  - SM_1989_62_1_a7
ER  - 
%0 Journal Article
%A D. V. Tunitsky
%T On the regular isometric immersion in $E^3$ of unbounded domains of
%J Sbornik. Mathematics
%D 1989
%P 121-138
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a7/
%G en
%F SM_1989_62_1_a7
D. V. Tunitsky. On the regular isometric immersion in $E^3$ of unbounded domains of. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 121-138. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a7/

[1] Rozendorn E. R., “Issledovaniya osnovnykh uravnenii teorii poverkhnostei otritsatelnoi krivizny v asimptoticheskikh koordinatakh”, Matem. sb., 70(112) (1966), 490–507 | MR | Zbl

[2] Poznyak E. G., “O regulyarnoi realizatsii v tselom dvumernykh metrik otritsatelnoi krivizny”, DAN SSSR, 170 (1966), 786–789 | Zbl

[3] Shikin E. V., “O regulyarnom pogruzhenii v tselom v $R^3$ metrik klassa $C^4$ otritsatelnoi krivizny”, Matem. zametki, 14 (1973), 261–266 | Zbl

[4] Kaidasov Zh., “O regulyarnom izometricheskom pogruzhenii v $E^3$ rasshiryayuscheisya polosy ploskosti Lobachevskogo”, Issledovaniya po teorii poverkhnostei v rimanovykh prostranstvakh, LGPI, L., 1984, 119–129 | MR

[5] Poznyak E. G., Shikin E. V., “Poverkhnosti otritsatelnoi krivizny”, Itogi nauki. Algebra. Topologiya. Geometriya, 12, VINITI, M., 1974, 171–207 | MR | Zbl

[6] Pogorelov A. V., Differentsialnaya geometriya, Nauka, M., 1969 | MR

[7] Rozhdestvenskii B. L., “Sistema kvazilineinykh uravnenii teorii poverkhnostei”, DAN SSSR, 143 (1962), 50–52 | Zbl

[8] Khartman F., Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[9] Hartman P., Wintner A., “On hyperbolic partial differential equations”, Amer. J. Math., 74 (1952), 834–864 | DOI | MR | Zbl

[10] Douglis A., “Some existence theorems for hyperbolic systems of partial differential equations in two independent variables”, Comun. pure and appl. math., 5 (1952), 119–154 | DOI | MR | Zbl

[11] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR | Zbl