Extension of CR-functions from piecewise smooth CR-manifolds
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 111-120 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to the locally polynomially convex hull of a CR-manifold. 1) An “edge of the wedge” type theorem is obtained for piecewise smooth CR-manifolds in $\mathbf C^n$. 2) It is shown that a CR-manifold of class $C^1$ is locally polynomially convex if and only if in a neighborhood of each point it foliates into complex analytic submanifolds of maximal possible dimension. 3) It is shown that only locally polynomially convex CR-manifolds are examples of manifolds on which the tangential Cauchy–Riemann equations $\overline\partial u=f$ are solvable locally for any $\overline\partial$-closed form $f$. Bibliography: 16 titles.
@article{SM_1989_62_1_a6,
     author = {R. A. Airapetyan},
     title = {Extension of {CR-functions} from piecewise smooth {CR-manifolds}},
     journal = {Sbornik. Mathematics},
     pages = {111--120},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/}
}
TY  - JOUR
AU  - R. A. Airapetyan
TI  - Extension of CR-functions from piecewise smooth CR-manifolds
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 111
EP  - 120
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/
LA  - en
ID  - SM_1989_62_1_a6
ER  - 
%0 Journal Article
%A R. A. Airapetyan
%T Extension of CR-functions from piecewise smooth CR-manifolds
%J Sbornik. Mathematics
%D 1989
%P 111-120
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/
%G en
%F SM_1989_62_1_a6
R. A. Airapetyan. Extension of CR-functions from piecewise smooth CR-manifolds. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/

[1] Airapetyan R. A., Khenkin G. M., “Analiticheskoe prodolzhenie CR-funktsii cherez ostrie klina”, DAN SSSR, 259:4 (1986), 777–781 | MR

[2] Airapetyan R. A., Khenkin G. M., “Integralnye predstavleniya differentsialnykh form na mnogoobraziyakh Koshi–Rimana i teoriya CR-funktsii. I”, UMN, 39:3 (1984), 39–106 ; “Интегральные представления дифференциальных форм на многообразиях Коши–Римана и теория CR-функций. II”, Матем сб., 127(169) (1985), 92–112 | MR | Zbl | MR | Zbl

[3] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968

[4] Pinchuk S. I., “Granichnaya teorema edinstvennosti dlya golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Matem. zametki, 15:2 (1974), 205–212 | Zbl

[5] Khurumov Yu. V., Suschestvovanie predelnykh znachenii i granichnaya teorema edinstvennosti dlya funktsii, meromorfnykh v kline v $\mathbf{C}^n$, Preprint No 20, Institut fiziki SO AN SSSR, Novosibirsk, 1982

[6] Chirka E. M., “Analiticheskoe predstavlenie CR-funktsii”, Matem. sb., 98(140) (1975), 591–623 | Zbl

[7] Scherbina N. V., “Forma Levi $C^1$-gladkikh giperpoverkhnostei i kompleksnaya struktura na granitse oblastei golomorfnosti”, Izv. AN SSSR. Ser. matem., 45 (1981), 874–895 | MR | Zbl

[8] Scherbina N. V., “O rassloenii obschei granitsy dvukh oblastei golomorfnosti na analiticheskie krivye”, Izv. AN SSSR. Ser. matem., 46 (1982), 1106–1123 | MR | Zbl

[9] Baouendi M. S., Treves F., “A property of the function and distributions annihilated by a locally integrable system of complex vector fields”, Ann. Math., 113:2 (1981), 341–421 | DOI | MR

[10] Bishop E., “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32:1 (1965), 1–21 | DOI | MR | Zbl

[11] Boggess A., Pitts J., “CR-extension neare a point of higher type”, C. r. Acad. Sci. Ser. 1, 298:1 (1984), 9–12 | MR | Zbl

[12] Goncar A. A., “On analytic continuation from the “edge of the wedge””, Ann. Acad. Scient. Fennical. Ser. A1., 10 (1985), 221–225

[13] Hunt L. R., Wells R. O., “Holomorphic extension for nongeneric CR-submanifolds”, Proceedengs of Symposia in Pure Mathematics, 27 (1975) | MR | Zbl

[14] Sommer F., “Komplex analytische Blatterung reeler Manningfaltigkeiten in $\mathbf{C}^n$”, Math. Ann., 1958, no. 136, 111–113 | DOI | MR

[15] Wells R. O., “Holomorphic convexity of differentiable submanifolds”, Trans. Amer. Math. Soc., 132 (1968), 245–262 | DOI | MR | Zbl

[16] Andreotti A., Fredricks G., Nacinovich M., “On the absence of Poincare Lemma in tangential Cauchy–Rimann complexes”, Ann. Scula Norm. Sup. Pisa. Ser. IV, 8:3, 365–404 | MR | Zbl