Extension of CR-functions from piecewise smooth CR-manifolds
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 111-120

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the locally polynomially convex hull of a CR-manifold. 1) An “edge of the wedge” type theorem is obtained for piecewise smooth CR-manifolds in $\mathbf C^n$. 2) It is shown that a CR-manifold of class $C^1$ is locally polynomially convex if and only if in a neighborhood of each point it foliates into complex analytic submanifolds of maximal possible dimension. 3) It is shown that only locally polynomially convex CR-manifolds are examples of manifolds on which the tangential Cauchy–Riemann equations $\overline\partial u=f$ are solvable locally for any $\overline\partial$-closed form $f$. Bibliography: 16 titles.
@article{SM_1989_62_1_a6,
     author = {R. A. Airapetyan},
     title = {Extension of {CR-functions} from piecewise smooth {CR-manifolds}},
     journal = {Sbornik. Mathematics},
     pages = {111--120},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/}
}
TY  - JOUR
AU  - R. A. Airapetyan
TI  - Extension of CR-functions from piecewise smooth CR-manifolds
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 111
EP  - 120
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/
LA  - en
ID  - SM_1989_62_1_a6
ER  - 
%0 Journal Article
%A R. A. Airapetyan
%T Extension of CR-functions from piecewise smooth CR-manifolds
%J Sbornik. Mathematics
%D 1989
%P 111-120
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/
%G en
%F SM_1989_62_1_a6
R. A. Airapetyan. Extension of CR-functions from piecewise smooth CR-manifolds. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 111-120. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a6/