The period map and the discriminant
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 65-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Nondegeneracy and compatibility is proved for the period map on the strata of the discriminant of a versal deformation of a critical point of a function (under hypotheses indicated in the paper). The weight foliation on the discriminant of a versal deformation of $A_4$ is described. The singularities of the foliation are connected with the singularities of the degeneration of the symplectic structure on a four-dimensional manifold. Figures: 10. Bibliography: 30 titles.
@article{SM_1989_62_1_a3,
     author = {A. N. Varchenko},
     title = {The period map and the discriminant},
     journal = {Sbornik. Mathematics},
     pages = {65--81},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a3/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - The period map and the discriminant
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 65
EP  - 81
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a3/
LA  - en
ID  - SM_1989_62_1_a3
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T The period map and the discriminant
%J Sbornik. Mathematics
%D 1989
%P 65-81
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a3/
%G en
%F SM_1989_62_1_a3
A. N. Varchenko. The period map and the discriminant. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 65-81. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a3/

[1] Arnold V. I., “Lagranzhevy mnogoobraziya s osobennostyami, asimptoticheskie luchi i raskrytyi lastochkin khvost”, Funktsion. analiz i ego pril., 15:4 (1981), 1–14 | MR

[2] Arnold V. I., “Osobennosti sistem luchei”, UMN, 38:2 (1983), 77–147 | MR | Zbl

[3] Arnold V. I., “Otobrazhenie periodov i puassonovy struktury”, UMN, 40:5 (1985), 236

[4] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. I, Nauka, M., 1982 | MR

[5] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. II, Nauka, M., 1984 | MR

[6] Arnold V. I., Givental A. B., “Simplekticheskaya geometriya”, Itogi nauki i tekhn. Sovremennye problemy matematiki. Fundamentalnye napravleniya, VINITI, M., 5–139 | MR

[7] Varchenko A. N., “Asimptoticheskaya struktura Khodzha v ischezayuschikh kogomologiyakh”, Izv. AN SSSR. Ser. matem., 45 (1981), 540–591 | MR | Zbl

[8] Varchenko A. N., “Otsenka korazmernosti strata $\mu=\const$ snizu cherez smeshannuyu strukturu Khodzha”, Vestn. MGU. Ser. matem., mekh., 1982, no. 6, 28–31 | MR | Zbl

[9] Varchenko A. N., “Vesovoe sloenie na diskriminante”, UMN, 42 (1987)

[10] Varchenko A. N., Obraz otobrazheniya periodov dlya prostykh osobennostei, Novoe v globalnom analize, Izd-vo VGU, Voronezh, 1987

[11] Varchenko A.N., Givental A. B., “Izobrazhenie periodov i forma peresechenii”, Funktsion. analiz i ego pril., 16:2 (1982), 1–14 | MR

[12] Varchenko A. N., Gusein-Zade S. M., “Topologiya kaustik, volnovykh frontov i vyrozhdeniya kriticheskikh tochek”, UMN, 39:2 (1984), 141–142 | MR | Zbl

[13] Varchenko A. P., Chmutov S. V., “O kasatelnom konuse k stratu $\mu=\const$”, Bectn. MGU. Ser. matem., mekh., 1985, no. 1, 6–9 | MR | Zbl

[14] Lyashko O. V., “Raspadenie prostykh osobennostei funktsii”, Funktsion. analiz i ego pril., 10:2 (1976), 49–56 | Zbl

[15] Lyashko O. V., “Geometriya bifurkatsionnykh diagramm”, Itogi nauki i tekhn. Sovremennye problemy matematiki, 22, VINITI, M., 1985, 94–129

[16] Malgranzh B., “O polinomakh I. N. Bernshteina”, UMN, 29:4 (1974), 81–88 | MR

[17] Petrov G. S., “Ellipticheskie integraly i ikh nekoleblemost”, Funktsion. analiz i ego pril., 20:1 (1986), 46–49 | MR | Zbl

[18] Deligne P., “Theorie de Hodge. I” (Nice, 1970), Proc. Int. Congress Math., 1, 425–430 ; “Theorie de Hodge. II”, Publ. Math. IHES., 40 (1971), 5–58 ; “Theorie de Hodge. III”, Publ. Math. IHES., 44 (1972), 5–77 | MR | Zbl | MR | MR

[19] Demazure M., “Classification des germes à point critique isolé et à nombre de modules 0 ou 1”, Lect. Notes Math., 431, 1975, 124–142 | MR | Zbl

[20] Griffiths P., Schmid W., “Recent development in Hodge theory”, Proc. Int. Colloq. on Discrete Subgroups of Lie Groups, Bombey, no. 1973, 31–127 | MR | Zbl

[21] Le Dung Trang, Ramanujam C. P., “The invariance of Milnor number implies the invariance of the topological type”, Amer. J. Math., 98 (1976), 67–78 | DOI | MR | Zbl

[22] Malgrange B., “Integrales asymptotique et monodromie”, Ann. Sci. Ecole Norm. Super., 7 (1974), 405–430 | MR | Zbl

[23] Martinet J., “Sur les singularitiés des formes differentielles”, Ann. Inst. Fourier, 20:1 (1970), 95–178 | MR | Zbl

[24] Oda T. K., “Saito's period map for holomorphic functions with isolated critical points”, Math. Inst. Tohoku Univ, 1986, 1–105

[25] Roussarte R., “Modèles locaux de champs et de formes”, Astérisque, 30 (1975), 99

[26] Saito K., On the periods of primitive integrals, Preprint, Harvard Univ., 1980

[27] Steenbrink J., “Mixed Hodge structure on the vanisshing cohomologies”, Real and Complex Singularities, Oslo, 1976, 525–563 | MR

[28] Steenbrink J., “Mixed Hodge structures associated with isolated singularities”, Proc. Symp. in Pure Math., 40:2 (1983), 513–536 | MR | Zbl

[29] Timourian I. G., “The invariance of Milnors number implies topological triviality”, Amer. J. Math., 99:2 (1977), 437–446 | DOI | MR | Zbl

[30] Varchenko A. N., “The Gauss–Manin connection of isolated singular point and Bernstein polynomial”, Bull. sci. math. Ser. 2, 104 (1980), 205–223 | MR | Zbl