The group of units of a~free product of rings
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 41-63

Voir la notice de l'article provenant de la source Math-Net.Ru

The main theorem asserts that the multiplicative group of a free product of rings, all of which satisfy the condition $xy=1\Rightarrow yx=1$, with the amalgamated skew field $\Lambda$, is a free product of a certain family of its subgroups with an amalgamated subgroup $\Lambda\setminus\{0\}$. As an application a ring $R$ is indicated for which the group $\operatorname{GE}_n(R)$ is a nontrivial free factor of $\operatorname{GL}_n(R)$ ($n$ being any natural number greater than one). Bibliography: 12 titles.
@article{SM_1989_62_1_a2,
     author = {V. N. Gerasimov},
     title = {The group of units of a~free product of rings},
     journal = {Sbornik. Mathematics},
     pages = {41--63},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a2/}
}
TY  - JOUR
AU  - V. N. Gerasimov
TI  - The group of units of a~free product of rings
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 41
EP  - 63
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a2/
LA  - en
ID  - SM_1989_62_1_a2
ER  - 
%0 Journal Article
%A V. N. Gerasimov
%T The group of units of a~free product of rings
%J Sbornik. Mathematics
%D 1989
%P 41-63
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a2/
%G en
%F SM_1989_62_1_a2
V. N. Gerasimov. The group of units of a~free product of rings. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 41-63. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a2/