Solvable homogeneous flows
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 243-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The “dissipativity–conservativity” alternative is proved and an ergodic decomposition for solvable flows is obtained. Figures: 1. Bibliography: 14 titles.
@article{SM_1989_62_1_a15,
     author = {A. N. Starkov},
     title = {Solvable homogeneous flows},
     journal = {Sbornik. Mathematics},
     pages = {243--260},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a15/}
}
TY  - JOUR
AU  - A. N. Starkov
TI  - Solvable homogeneous flows
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 243
EP  - 260
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a15/
LA  - en
ID  - SM_1989_62_1_a15
ER  - 
%0 Journal Article
%A A. N. Starkov
%T Solvable homogeneous flows
%J Sbornik. Mathematics
%D 1989
%P 243-260
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a15/
%G en
%F SM_1989_62_1_a15
A. N. Starkov. Solvable homogeneous flows. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 243-260. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a15/

[1] Ragunatan M., Diskretnye podgruppy grupp Li, Mir, M., 1977 | MR

[2] Auslender L., Grin L., Khan F., Potoki na odnorodnykh prostranstvakh, Mir, M., 1966 | MR

[3] Auslander L., “An exposition of the structure of solvmanifolds”, Bull. Amer. Math. Soc., 79:2 (1973), 227–285 | DOI | MR

[4] Moore C. C., “The Mautner phenomenon for general unitary representations”, Pacific J. Math., 86:1 (1980), 154–169 | MR

[5] Rieffel M. A., “Ergodic decomposition for pairs of lattices in Lie groups”, J. Reine und Angew Math., 326:1, 45–53 | MR | Zbl

[6] Starkov A. N., “Neergodicheskie odnorodnye potoki”, DAN SSSR, 288:3 (1986), 560–562 | MR | Zbl

[7] Starkov A. N., “Potoki na kompaktnykh razreshimykh mnogoobraziyakh”, Matem. sb., 123(165) (1984), 549–556 | MR

[8] Starkov A. N., “Ergodicheskoe povedenie potokov na odnorodnykh prostranstvakh”, DAN SSSR, 273:3 (1983), 538–540 | MR | Zbl

[9] Dani S. G., “Invariant measures and minimal sets of horospherical flows”, Invent. Math., 64 (1981), 357–385 | DOI | MR | Zbl

[10] Khopf E., “Statistika geodezicheskikh linii”, UMN, 4:2 (1949), 129–170 | MR

[11] Borel A., Lineinye algebraicheskie gruppy, Mir, M., 1973 | Zbl

[12] Auslander L., Brezin J., “Almost algebraic Lie algebras”, J. of Algebra, 8:4 (1968), 295–313 | DOI | MR | Zbl

[13] Starkov A. N., “Ergodicheskoe razlozhenie dlya odnorodnykh potokov”, Izv. AN SSSR. Ser. matem., 51:6 (1987), 1191–1213 | MR | Zbl

[14] Dani S. G., “Strictly non-ergodic actions on homogeneous spaces”, Duke J. Math., 47:3 (1980), 633–639 | DOI | MR | Zbl