The averaging method for weakly nonlinear operator equations
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 223-242 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A method asymptotic with respect to a small parameter $\varepsilon$ is presented for solving Cauchy problems for the evolution equations $$ u_t+Lu=\varepsilon f[u],\qquad u(0)=u_0, $$ where $L$ is a linear operator and $f$ is a nonlinear operator. It is assumed that the method of regular expansion in powers of $\varepsilon$ leads to secular terms. Such terms can be removed by suitably defining how the terms of the asymptotic solution depend on the slow variable $\tau=\varepsilon t$. The proposed method is modified for equations of second order in $t$. The possibility of getting rid of the terms secular with respect to $\tau$, and of applying the asymptotic methods in the case of problems with strong forced resonance, is indicated. Examples are given which illustrate possibilities for the proposed methods. Bibliography: 16 titles.
@article{SM_1989_62_1_a14,
     author = {A. L. \v{S}taras},
     title = {The averaging method for weakly nonlinear operator equations},
     journal = {Sbornik. Mathematics},
     pages = {223--242},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/}
}
TY  - JOUR
AU  - A. L. Štaras
TI  - The averaging method for weakly nonlinear operator equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 223
EP  - 242
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/
LA  - en
ID  - SM_1989_62_1_a14
ER  - 
%0 Journal Article
%A A. L. Štaras
%T The averaging method for weakly nonlinear operator equations
%J Sbornik. Mathematics
%D 1989
%P 223-242
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/
%G en
%F SM_1989_62_1_a14
A. L. Štaras. The averaging method for weakly nonlinear operator equations. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 223-242. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/

[1] Bogolyubov N. N., Mitropolskii Yu. A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] Mitropolskii Yu. A., Moseenkov B. I., Asimptoticheskie resheniya uravnenii v chastnykh proizvodnykh, Vischa shkola, Kiev, 1976

[3] Mitropolskii Yu. A., Khoma G. P., Matematicheskoe obosnovanie asimptoticheskikh metodov nelineinoi mekhaniki, Naukova dumka, Kiev, 1983 | MR

[4] Naife A. Kh., Metody vozmuschenii, Mir, M., 1976 | MR

[5] Lomov S. A., Vvedenie v obschuyu teoriyu singulyarnykh vozmuschenii, Nauka, M., 1981 | MR

[6] Kevorkian J., Cole J. D., Perturbation methods in applied mathematics, Springer Verlag, N.-Y., 1981 | MR | Zbl

[7] Engelbrekht Yu. K., Nigul U. K., Nelineinye volny deformatsii, Nauka, M., 1981 | MR

[8] Babich V. M., Buldyrev V. S, Molotkov I. A., Prostranstvenno-vremennoi luchevoi metod. Lineinye i nelineinye volny, Izd-vo LGU, L., 1985 | MR | Zbl

[9] Shtaras A. L., “Asimptoticheskoe integrirovanie slabonelineinykh uravnenii s chastnymi proizvodnymi”, DAN SSSR, 237:3 (1977), 525–528 | MR | Zbl

[10] Shtaras A. L., “Sobstvennye kolebaniya v nelineinom zvukovom rezonatore”, DAN SSSR, 266:5 (1982), 1100–1104 | MR | Zbl

[11] Shtaras A. L., “Vynuzhdennye kolebaniya v nelineinom zvukovom rezonatore”, DAN SSSR, 269:3 (1983), 592–595 | MR | Zbl

[12] Shtaras A. L., “Asimptoticheskoe reshenie silnoostsilliruyuschikh zadach dlya uravneniya Kleina–Gordona”, Matem. voprosy teorii rasprostraneniya voln. 15. Zap. nauchn. seminarov LOMI., 148 (1985), 167–175 | MR | Zbl

[13] Kalyakin L. A., “Asimptotika resheniya giperbolicheskoi sistemy uravnenii s nelineinym vozmuscheniem”, UMN, 39:5, 243–244 | MR | Zbl

[14] Krylov A. V., “Asimptoticheskaya approksimatsiya reshenii slabonelineinykh differentsialnykh sistem”, Litovskii matem. sb., 25:2 (1985), 102–113 | MR | Zbl

[15] Dorodnitsyn A. A., “Asimptoticheskoe reshenie uravneniya Van-der-Polya”, Prikl. matem. i mekhan., 11:3 (1947), 313–328 | MR | Zbl

[16] Mischenko E. F., Rozov N. Kh., Differentsialnye uravneniya s malym parametrom i relaksatsionnye kolebaniya, Nauka, M., 1975 | MR