The averaging method for weakly nonlinear operator equations
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 223-242

Voir la notice de l'article provenant de la source Math-Net.Ru

A method asymptotic with respect to a small parameter $\varepsilon$ is presented for solving Cauchy problems for the evolution equations $$ u_t+Lu=\varepsilon f[u],\qquad u(0)=u_0, $$ where $L$ is a linear operator and $f$ is a nonlinear operator. It is assumed that the method of regular expansion in powers of $\varepsilon$ leads to secular terms. Such terms can be removed by suitably defining how the terms of the asymptotic solution depend on the slow variable $\tau=\varepsilon t$. The proposed method is modified for equations of second order in $t$. The possibility of getting rid of the terms secular with respect to $\tau$, and of applying the asymptotic methods in the case of problems with strong forced resonance, is indicated. Examples are given which illustrate possibilities for the proposed methods. Bibliography: 16 titles.
@article{SM_1989_62_1_a14,
     author = {A. L. \v{S}taras},
     title = {The averaging method for weakly nonlinear operator equations},
     journal = {Sbornik. Mathematics},
     pages = {223--242},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/}
}
TY  - JOUR
AU  - A. L. Štaras
TI  - The averaging method for weakly nonlinear operator equations
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 223
EP  - 242
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/
LA  - en
ID  - SM_1989_62_1_a14
ER  - 
%0 Journal Article
%A A. L. Štaras
%T The averaging method for weakly nonlinear operator equations
%J Sbornik. Mathematics
%D 1989
%P 223-242
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/
%G en
%F SM_1989_62_1_a14
A. L. Štaras. The averaging method for weakly nonlinear operator equations. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 223-242. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a14/