Time optimality and the power moment problem
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 185-206
Cet article a éte moissonné depuis la source Math-Net.Ru
A solution of the problem of exact determination of a time optimal control for the equation $x^{(n)}=u$, $|u|\le1$, in the open loop form as well as in the closed loop form is presented in this paper. A system of special polynomials, called canonical variables, is introduced. The solution is obtained in terms of Hankel determinants and a sequence of Markov determinants in the canonical variables. A connection between the solution obtained and the power moment problem is investigated. Bibliography: 6 titles.
@article{SM_1989_62_1_a12,
author = {V. I. Korobov and G. M. Sklyar},
title = {Time optimality and the power moment problem},
journal = {Sbornik. Mathematics},
pages = {185--206},
year = {1989},
volume = {62},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a12/}
}
V. I. Korobov; G. M. Sklyar. Time optimality and the power moment problem. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 185-206. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a12/
[1] Pontryagin L. S, Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[2] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR
[3] Markov A. A., Izbrannye trudy, Gostekhizdat, M., 1948
[4] Korobov V. I., “Obschii podkhod k resheniyu zadachi sinteza ogranichennykh upravlenii v zadache upravlyaemosti”, Matem. sb., 109(151) (1979), 582–606 | MR | Zbl
[5] Chebyshev P. L., Polnoe sobranie sochinenii, T. III, Izd-vo AN SSSR, M., 1948 | MR
[6] Stiltes T., Issledovanie nepreryvnykh drobei, Kharkov, 1936