Realization of quadratic forms by smooth manifolds
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 177-184

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved in this paper that, for every $k>1$, each integral unimodular quadratic form is the intersection index form of some smooth closed manifold of dimension $4k$. The question is also studied of the realizability of such forms by manifolds with additional structures on the stable normal bundle and, as a consequence, of the realizability of forms by highly connected manifolds. Bibliography: 10 titles.
@article{SM_1989_62_1_a11,
     author = {I. O. Kalinin},
     title = {Realization of quadratic forms by smooth manifolds},
     journal = {Sbornik. Mathematics},
     pages = {177--184},
     publisher = {mathdoc},
     volume = {62},
     number = {1},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a11/}
}
TY  - JOUR
AU  - I. O. Kalinin
TI  - Realization of quadratic forms by smooth manifolds
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 177
EP  - 184
VL  - 62
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a11/
LA  - en
ID  - SM_1989_62_1_a11
ER  - 
%0 Journal Article
%A I. O. Kalinin
%T Realization of quadratic forms by smooth manifolds
%J Sbornik. Mathematics
%D 1989
%P 177-184
%V 62
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a11/
%G en
%F SM_1989_62_1_a11
I. O. Kalinin. Realization of quadratic forms by smooth manifolds. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 177-184. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a11/