Asymptotics of the solution of the Dirichlet problem for the system
Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 1-27 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The asymptotics is found for a solution of the system of equations $$ A(\partial_x)\mathbf u(x)+\omega^2\rho\mathbf u(x)=0,\quad x\in D_\varepsilon,\qquad \mathbf u(x)=\mathbf f(x),\quad x\in S_\varepsilon, $$ of steady-state elastic vibrations of an isotropic medium. Here $x\in\mathbf R^3$, $\varepsilon>0$ is a small parameter, $S_\varepsilon$ is a bounded closed surface given in spheroidal coordinates by the equation $\xi=1+\varepsilon g(\eta,\varepsilon)$, and $D_\varepsilon$ is the exterior of $S_\varepsilon$. The vector-valued function $\mathbf u(x)$ satisfies a radiation condition. The asymptotics of the solution of the problem is found up to $O(\varepsilon^m)$, $m>0$ arbitrary, in the case where the boundary condition does not depend on the polar angle $\varphi$, and up to $O(\varepsilon^2\ln\varepsilon)$ in the case of boundary conditions which are not axially symmetric. The formulas obtained are valid everywhere near the body (including neighborhoods of the end points) and far from it. Bibliography: 12 titles.
@article{SM_1989_62_1_a0,
     author = {G. V. Zhdanova},
     title = {Asymptotics of the solution of the {Dirichlet} problem for the system},
     journal = {Sbornik. Mathematics},
     pages = {1--27},
     year = {1989},
     volume = {62},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1989_62_1_a0/}
}
TY  - JOUR
AU  - G. V. Zhdanova
TI  - Asymptotics of the solution of the Dirichlet problem for the system
JO  - Sbornik. Mathematics
PY  - 1989
SP  - 1
EP  - 27
VL  - 62
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1989_62_1_a0/
LA  - en
ID  - SM_1989_62_1_a0
ER  - 
%0 Journal Article
%A G. V. Zhdanova
%T Asymptotics of the solution of the Dirichlet problem for the system
%J Sbornik. Mathematics
%D 1989
%P 1-27
%V 62
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1989_62_1_a0/
%G en
%F SM_1989_62_1_a0
G. V. Zhdanova. Asymptotics of the solution of the Dirichlet problem for the system. Sbornik. Mathematics, Tome 62 (1989) no. 1, pp. 1-27. http://geodesic.mathdoc.fr/item/SM_1989_62_1_a0/

[1] Kupradze V. D., Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti, Nauka, M., 1976 | MR

[2] Lure A. I., Teoriya uprugosti, Nauka, M., 1970

[3] Mazya V. G., Nazarov S. A., Plamenevskii B. A., “Ob asimptotike reshenii zadachi Dirikhle v trekhmernoi oblasti s vyrezannym tonkim telom”, DAN SSSR, 256:1 (1981), 37–39 | MR

[4] Mazya V. G., Nazarov S. A., Plamenevskii B. A., Asimptotika reshenii ellipticheskikh kraevykh zadach pri singulyarnykh vozmuscheniyakh oblasti, Izd-vo Tbilissk. un-ta, Tbilisi, 1981 | MR

[5] Fedoryuk M. V., “Zadacha Dirikhle dlya operatora Laplasa vo vneshnosti tonkogo tela vrascheniya”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki (Trudy seminara S. L. Soboleva, 1980. No 1), Novosibirsk, 1980, 113–131 | MR | Zbl

[6] Zhdanova G. V., “Zadacha Dirikhle dlya operatora Gelmgoltsa vo vneshnosti tonkogo tela vrascheniya”, Differents. uravneniya, 20:8 (1984), 1403–1411 | MR | Zbl

[7] Zhdanova G. V., “Rasseyanie ploskikh prodolnykh uprugikh voln tonkoi polostyu vrascheniya. Sluchai osevogo padeniya”, Matem. sb., 121(163):3(7) (1983), 310–326 | MR | Zbl

[8] Zhdanova G. V., “Rasseyanie ploskikh uprugikh voln tonkim telom so svobodnoi granitsei”, DAN SSSR, 270:6 (1983), 1300–1305 | MR | Zbl

[9] Zhdanova G. V., “Rasseyanie ploskikh uprugikh voln tonkoi polostyu so svobodnoi granitsei”, Zh. vychisl. matem. i matem. fiziki, 24:7 (1984), 1054–1065 | MR | Zbl

[10] Uitteker E. T., Vatson Dzh. N., Kurs sovremennogo analiza, T. 2, Fizmatgiz, M., 1963

[11] Vladimirov V. S., Uravneniya matematicheskoi fiziki, Nauka, M., 1967 | MR

[12] Fedoryuk M. V., Metod perevala, Nauka, M., 1977 | MR