Weakly holomorphic functions on complete intersections, and their holomorphic extension
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 421-436 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The properties of weakly holomorphic functions on analytic sets which are complete intersections are investigated: universal denominators are determined for a system of equations $f=0$ defining the analytic set $A$; a (residual) current $hR_f$ is constructed such that it is $\overline\partial$-closed if and only if the weakly holomorphic function $h$ can be locally extended from $A$; and integral representations for weakly holomorphic functions are given. These results are applied to the problem of lowering the order of poles of rational differential 2-forms in $\mathbf C^2$. Bibliography: 20 titles.
@article{SM_1988_61_2_a9,
     author = {A. K. Tsikh},
     title = {Weakly holomorphic functions on complete intersections, and their holomorphic extension},
     journal = {Sbornik. Mathematics},
     pages = {421--436},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a9/}
}
TY  - JOUR
AU  - A. K. Tsikh
TI  - Weakly holomorphic functions on complete intersections, and their holomorphic extension
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 421
EP  - 436
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a9/
LA  - en
ID  - SM_1988_61_2_a9
ER  - 
%0 Journal Article
%A A. K. Tsikh
%T Weakly holomorphic functions on complete intersections, and their holomorphic extension
%J Sbornik. Mathematics
%D 1988
%P 421-436
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a9/
%G en
%F SM_1988_61_2_a9
A. K. Tsikh. Weakly holomorphic functions on complete intersections, and their holomorphic extension. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 421-436. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a9/

[1] Abhyankar Sh., “Concepts of order and rank on a complex space, and a condition for normality”, Math. Ann., 141:2 (1960), 171–192 | DOI | MR | Zbl

[2] Stout E. L., “An integral formula for holomorphic functions on strictly pseudoconvex hypersurfaces”, Duke Math. J., 42:2 (1975), 347–356 | DOI | MR | Zbl

[3] Henkin G. M., Leiterer J., “Global integral formulas for solving the $\bar\partial$-equation on Stein manifolds”, Ann. Polon. Math., 39 (1981), 93–116 | MR | Zbl

[4] Atya M. F., Bott R., Gording L., “Lakuny dlya giperbolicheskikh differentsialnykh operatorov s postoyannymi koeffitsientami. II”, UMN, 39:3 (1984), 171–224 | MR

[5] Erve M., Funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1965 | MR

[6] Chirka E. M., Kompleksnye analiticheskie mnozhestva, Nauka, M., 1985 | MR

[7] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. 2, Nauka, M., 1985 | MR

[8] Ganning R., Rossi Kh., Analiticheskie funktsii mnogikh kompleksnykh peremennykh, Mir, M., 1969 | MR

[9] Griffits F., Kharris Dzh., Printsipy algebraicheskoi geometrii, Mir, M., 1982 | MR

[10] Aizenberg L. A., Yuzhakov A. P., Integralnye predstavleniya i vychety v mnogomernom kompleksnom analize, Nauka, Novosibirsk, 1979

[11] Palamodov V. P., Lineinye differentsialnye operatory s postoyannymi koeffitsientami, Nauka, M., 1967 | MR

[12] Palamodov V. P., “O kratnosti golomorfnogo otobrazheniya”, Funktsion. analiz i ego pril., 1:3 (1967), 54–65 | MR | Zbl

[13] Chirka E. M., “Potoki i ikh primeneniya”, Kharvi R. Golomorfnye tsepi i ikh granitsy, Mir, M., 1979, 122–154 | MR

[14] Herrera M. E., Liebermann D., “Residues and principal values on complex spaces”, Math. Ann., 194:4 (1971), 259–294 | DOI | MR | Zbl

[15] Coleff N. R., Herrera M. E., “Les courants residuals associes a une forme meromorphe”, Lect. Not. in Math., 633, 1978 | MR | Zbl

[16] Lere Zh., Differentsialnoe i integralnoe ischislenie na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961

[17] Pettersson M., Residues, currents, and their relation to ideals of holomorphic functions, Uppsala University. Dep. Math. Report, 1984

[18] Spallek K., “Differenzierbare und holomorphe functionen auf analytischen mengen”, Math. Ann., 161:2 (1965), 143–162 | DOI | MR | Zbl

[19] Shafarevich I. R., Osnovy algebraicheskoi geometrii, Nauka, M., 1972 | MR | Zbl

[20] Bishop E., “Mappings of partially analytic spaces”, Amer. J. Math., 83 (1961), 209–242 | DOI | MR | Zbl