Finite dimensionality of an attractor in some problems of nonlinear shell theory
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 411-420 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that there exists a compact maximal attractor of finite Hausdorff dimension in the problem of nonlinear oscillations of an elastic sloping shell in a supersonic gas flow. The arguments are of a general nature, and are applicable to a large class of quasilinear partial differential equations. Bibliography: 12 titles.
@article{SM_1988_61_2_a8,
     author = {I. D. Chueshov},
     title = {Finite dimensionality of an attractor in some problems of nonlinear shell theory},
     journal = {Sbornik. Mathematics},
     pages = {411--420},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a8/}
}
TY  - JOUR
AU  - I. D. Chueshov
TI  - Finite dimensionality of an attractor in some problems of nonlinear shell theory
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 411
EP  - 420
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a8/
LA  - en
ID  - SM_1988_61_2_a8
ER  - 
%0 Journal Article
%A I. D. Chueshov
%T Finite dimensionality of an attractor in some problems of nonlinear shell theory
%J Sbornik. Mathematics
%D 1988
%P 411-420
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a8/
%G en
%F SM_1988_61_2_a8
I. D. Chueshov. Finite dimensionality of an attractor in some problems of nonlinear shell theory. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 411-420. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a8/

[1] Bolotin V. V., Nekonservativnye zadachi teorii uprugoi ustoichivosti, Fizmatgiz, M., 1961 | MR

[2] Morozov N. F., Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo LGU, L., 1978 | MR

[3] Babin A. V., Vishik M. I., “Attraktory evolyutsionnykh uravnenii s chastnymi proizvodnymi i otsenki ikh razmernosti”, UMN, 38:4 (1983), 133–187 | MR | Zbl

[4] Ladyzhenskaya O. A., “O konechnomernosti ogranichennykh invariantnykh mnozhestv dlya sistemy Nave–Stoksa i drugikh dissipativnykh sistem”, 3ap. nauchn. seminarov LOMI, 115 (1982), 137–155 | MR | Zbl

[5] Haraux A., “Two remarks on dissipative hyperbolic problems”, Nonlinear partial differential equations and their applications, Collg̀e de France seminar, vol. VII (Paris, 1983–1984), Res. Notes in Math., 122, Pitman, Boston, MA, 1985, 6, 161–179 | MR

[6] Holmes P., “A nonlinear oscillator with strange attractor”, Phil. Trans. Roy. Soc. A, 292 (1979), 419–448 | DOI | MR | Zbl

[7] Dauell E., “Panelnyi flatter: obzor issledovanii aerouprugoi ustoichivosti plastinok i obolochek”, Raket. tekhn. i kosmonavtika, 8:3 (1970), 3–23

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR

[9] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl

[10] Ladyzhenskaya O. A., “O dinamicheskoi sisteme, porozhdaemoi uravneniyami Nave–Stoksa”, Zap. nauchn. seminarov LOMI, 27 (1972), 91–115 | Zbl

[11] Babin A. V., Vishik M. I., “Maksimalnye attraktory polugrupp, sootvetstvuyuschikh evolyutsionnym differentsialnym uravneniyam”, Matem. sb., 126(168) (1985), 397–419 | MR

[12] Ghidaglia J.-M., Temam R., “Proprietes des attracteurs associes a des equations hyperboliques non lineaires amorties”, C. r. Acad. sci. Ser. 1, 300:7 (1985), 185–188 | MR | Zbl