@article{SM_1988_61_2_a7,
author = {F. Kh. Mukminov and V. V. Sokolov},
title = {Integrable evolution equations with constraints},
journal = {Sbornik. Mathematics},
pages = {389--410},
year = {1988},
volume = {61},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/}
}
F. Kh. Mukminov; V. V. Sokolov. Integrable evolution equations with constraints. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 389-410. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/
[1] Kaup D. J., “The Estabrook–Wahlquist method with examples of application”, Physica D, 1D:4 (1980), 391–411 | DOI | MR
[2] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR
[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR | Zbl
[4] Vinogradov A. M., “Kategoriya nelineinykh differentsialnykh uravnenii”, Uravneniya na mnogoobraziyakh. Ser. Novoe v globolnom analize, Voronezh, 1982, 31–43
[5] Ibragimov N. Kh., Shabat A. B., “O beskonechnykh algebrakh Li–Beklunda”, Funktsion. analiz i ego pril., 14:4 (1980), 79–80 | MR | Zbl
[6] Svinolupov S. I., Sokolov V. V., “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funktsion. analiz i ego pril., 16:4 (1982), 86–87 | MR | Zbl
[7] Zhiber A. V., Shabat A. B., “Sistemy uravnenii $u_x=p(u,v)$, $v_y=q(u,v)$, obladayuschie simmetriyami”, DAN SSSR, 277:1 (1984), 29–33 | MR | Zbl
[8] Sokolov V. A., Shabat A. B., “Classification of integrable evolution equations”, Soviet Scientific Reviews. Section C, 4, Harwood Academic Publishers, N.Y., 1984, 221–280 | MR
[9] Chen H. H., Lee Y. C, Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Physica Scripta, 20:3/4 (1979), 490–492 | DOI | MR | Zbl
[10] Svinolupov S. I., “Ob analogakh uravneniya Byurgersa proizvolnogo poryadka”, TMF, 65:2 (1985), 303–307 | MR | Zbl
[11] Krichever I. M., “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funktsion. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl
[12] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl
[13] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959
[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[15] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[16] Ore O., “Theory of non-commutative polynomials”, Ann. of Math., 34 (1933), 480–508 | DOI | MR | Zbl
[17] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR
[18] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981
[19] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, M., 1978, 5–152 | MR
[20] Svinolupov S. I., Sokolov V. V., Yamilov R. I., “O preobrazovaniyakh Beklunda dlya integriruemykh evolyutsionnykh uravnenii”, DAN SSSR, 271:4 (1983), 802–805 | MR | Zbl
[21] Sokolov V. V., “O gamiltonovosti uravneniya Krichevera–Novikova”, DAN SSSR, 277:1 (1984), 48–50 | MR
[22] Calogero F., Degasperis A., Reduction Technique for matrix non-linear evolutions solvable by the spectral transform, Preprint No 151, Instituto di Fisica, Univ. de Roma, Rome, 1979 | MR
[23] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, Ufa, 1982, 95–114 | Zbl
[24] Svinolupov S. I., Spisok formalno integriruemykh uravnenii vida $u_t=f(u)u_3+h(u,u_1,u_2)$, Dep. VINITI, No 2962-83, Ufa, 1983 | Zbl