Integrable evolution equations with constraints
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 389-410 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main results relate to evolution equations with constraints which possess an infinite series of local conservation laws. Bibliography: 24 titles.
@article{SM_1988_61_2_a7,
     author = {F. Kh. Mukminov and V. V. Sokolov},
     title = {Integrable evolution equations with constraints},
     journal = {Sbornik. Mathematics},
     pages = {389--410},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/}
}
TY  - JOUR
AU  - F. Kh. Mukminov
AU  - V. V. Sokolov
TI  - Integrable evolution equations with constraints
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 389
EP  - 410
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/
LA  - en
ID  - SM_1988_61_2_a7
ER  - 
%0 Journal Article
%A F. Kh. Mukminov
%A V. V. Sokolov
%T Integrable evolution equations with constraints
%J Sbornik. Mathematics
%D 1988
%P 389-410
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/
%G en
%F SM_1988_61_2_a7
F. Kh. Mukminov; V. V. Sokolov. Integrable evolution equations with constraints. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 389-410. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a7/

[1] Kaup D. J., “The Estabrook–Wahlquist method with examples of application”, Physica D, 1D:4 (1980), 391–411 | DOI | MR

[2] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[3] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, Nauka, M., 1968 | MR | Zbl

[4] Vinogradov A. M., “Kategoriya nelineinykh differentsialnykh uravnenii”, Uravneniya na mnogoobraziyakh. Ser. Novoe v globolnom analize, Voronezh, 1982, 31–43

[5] Ibragimov N. Kh., Shabat A. B., “O beskonechnykh algebrakh Li–Beklunda”, Funktsion. analiz i ego pril., 14:4 (1980), 79–80 | MR | Zbl

[6] Svinolupov S. I., Sokolov V. V., “Ob evolyutsionnykh uravneniyakh s netrivialnymi zakonami sokhraneniya”, Funktsion. analiz i ego pril., 16:4 (1982), 86–87 | MR | Zbl

[7] Zhiber A. V., Shabat A. B., “Sistemy uravnenii $u_x=p(u,v)$, $v_y=q(u,v)$, obladayuschie simmetriyami”, DAN SSSR, 277:1 (1984), 29–33 | MR | Zbl

[8] Sokolov V. A., Shabat A. B., “Classification of integrable evolution equations”, Soviet Scientific Reviews. Section C, 4, Harwood Academic Publishers, N.Y., 1984, 221–280 | MR

[9] Chen H. H., Lee Y. C, Liu C. S., “Integrability of nonlinear Hamiltonian systems by inverse scattering method”, Physica Scripta, 20:3/4 (1979), 490–492 | DOI | MR | Zbl

[10] Svinolupov S. I., “Ob analogakh uravneniya Byurgersa proizvolnogo poryadka”, TMF, 65:2 (1985), 303–307 | MR | Zbl

[11] Krichever I. M., “Kommutativnye koltsa obyknovennykh lineinykh differentsialnykh operatorov”, Funktsion. analiz i ego pril., 12:3 (1978), 20–31 | MR | Zbl

[12] Krichever I. M., Novikov S. P., “Golomorfnye rassloeniya nad algebraicheskimi krivymi i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[13] Kaplanskii I., Vvedenie v differentsialnuyu algebru, IL, M., 1959

[14] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[15] Ibragimov N. Kh., Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[16] Ore O., “Theory of non-commutative polynomials”, Ann. of Math., 34 (1933), 480–508 | DOI | MR | Zbl

[17] Kon P., Svobodnye koltsa i ikh svyazi, Mir, M., 1975 | MR

[18] Kobayasi Sh., Nomidzu K., Osnovy differentsialnoi geometrii, Nauka, M., 1981

[19] Manin Yu. I., “Algebraicheskie aspekty nelineinykh differentsialnykh uravnenii”, Itogi nauki i tekhniki. Sovremennye problemy matematiki, 11, VINITI, M., 1978, 5–152 | MR

[20] Svinolupov S. I., Sokolov V. V., Yamilov R. I., “O preobrazovaniyakh Beklunda dlya integriruemykh evolyutsionnykh uravnenii”, DAN SSSR, 271:4 (1983), 802–805 | MR | Zbl

[21] Sokolov V. V., “O gamiltonovosti uravneniya Krichevera–Novikova”, DAN SSSR, 277:1 (1984), 48–50 | MR

[22] Calogero F., Degasperis A., Reduction Technique for matrix non-linear evolutions solvable by the spectral transform, Preprint No 151, Instituto di Fisica, Univ. de Roma, Rome, 1979 | MR

[23] Yamilov R. I., “O klassifikatsii diskretnykh uravnenii”, Integriruemye sistemy, Ufa, 1982, 95–114 | Zbl

[24] Svinolupov S. I., Spisok formalno integriruemykh uravnenii vida $u_t=f(u)u_3+h(u,u_1,u_2)$, Dep. VINITI, No 2962-83, Ufa, 1983 | Zbl