A matrix analogue of Appell's theorem and reductions of multidimensional Riemann theta-functions
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 379-388 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The purpose of this paper is to determine a simple and efficient method of reduction of Riemann theta-functions of large genus to Riemann theta-functions of smaller genus. Figures: 1. Bibliography: 15 titles.
@article{SM_1988_61_2_a6,
     author = {A. O. Smirnov},
     title = {A~matrix analogue of {Appell's} theorem and reductions of multidimensional {Riemann} theta-functions},
     journal = {Sbornik. Mathematics},
     pages = {379--388},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a6/}
}
TY  - JOUR
AU  - A. O. Smirnov
TI  - A matrix analogue of Appell's theorem and reductions of multidimensional Riemann theta-functions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 379
EP  - 388
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a6/
LA  - en
ID  - SM_1988_61_2_a6
ER  - 
%0 Journal Article
%A A. O. Smirnov
%T A matrix analogue of Appell's theorem and reductions of multidimensional Riemann theta-functions
%J Sbornik. Mathematics
%D 1988
%P 379-388
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a6/
%G en
%F SM_1988_61_2_a6
A. O. Smirnov. A matrix analogue of Appell's theorem and reductions of multidimensional Riemann theta-functions. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 379-388. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a6/

[1] Babich M. V., Bobenko A. I., Matveev V. B., “Reduktsiya mnogomernykh teta-funktsii i simmetrii algebraicheskikh krivykh”, DAN SSSR, 272:1 (1983), 13–17 | MR | Zbl

[2] Belokolos E. D., Enolskii V. Z., “Obobschennyi anzats Lemba”, TMF, 53:2 (1982), 271–282 | MR | Zbl

[3] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno-periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:6 (1974), 2131–2143 | MR

[4] Dubrovin B. A., Geometriya abelevykh mnogoobrazii i rimanovykh poverkhnostei i nelineinye uravneniya, Dis. $\dots$ dokt. fiz.-mat. nauk, MGU, M., 1984

[5] Dubrovin B. A., Natanzon S. M., “Veschestvennye dvukhzonnye resheniya uravneniya sine-Gordon”, Funktsion. analiz i ego pril., 16:1 (1982), 27–43 | MR | Zbl

[6] Krichever I. M., “Kommutiruyuschie differentsialnye operatory i konechnozonnye resheniya uravneniya Kadomtseva–Petviashvili”, DAN SSSR, 227:2 (1976), 291–294 | MR | Zbl

[7] Krichever I. M., “Metody algebraicheskoi geometrii v teorii nelineinykh uravnenii”, UMN, 32:6 (1977), 183–208 | MR | Zbl

[8] Novikov S. P., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza”, Funktsion. analiz i ego pril., 8:3 (1974), 54–66 | MR | Zbl

[9] Springer Dzh., Vvedenie v teoriyu rimanovykh poverkhnostei, IL, M., 1960

[10] Appel P., “Sur des cas de réduction de fonction $\Theta$ de plusieurs variables à de fonctions $\Theta$ d'un moindre nombre de variables”, Bull. de la Soc. Math. de France, 10 (1982), 59–67

[11] Belokolos E. D., Bobenko A. I., Enol'skii V. Z., Malveev V. B., Reduction of abelian integrals and Riemann theta-functions, Preprint ITP-84-149, Inst. Theor. Phys., Kiev, 1984

[12] Fay J. D., “Theta-functions on Riemann surfaces”, Lect. Notes in Math., 352, 1973, 137 | MR | Zbl

[13] Igusa J., “Problems on abelian functions at the time of Poincare and some present”, Bull. of the AMS, 6:2 (1982), 161–174 | DOI | MR | Zbl

[14] Matveev V. B., Yavor M. I., “Solution presque periodique et $N$-solitons de l'equation hydrodynamique non linéaire de Kaup”, Ann. Inst. H. Poincaré. sec. A, Phys. Théorique, 31:1 (1979), 25–41 | MR | Zbl

[15] Poincaré H., “Sur la réduction des integrales abélinnes”, Bull. Soc. Math. de France, 12 (1884), 124–143 ; Oeuvres, III, 333–351 | MR | Zbl