Boundary uniqueness theorems for meromorphic functions
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 321-334 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A study is made of sets of uniqueness for the class of arbitrary meromorphic functions on the disk and for the limit values over $h$-angles (domains with zero angle on the boundary and with form determined by a function $h(x)$). The sets of uniqueness are characterized with the help of the concepts of $h$-indecomposability of $h$-regularity, introduced and studied in this article. These concepts turn out to be intermediate between measure and category. The concept of the porosity of a set served as a starting point for the definition of the property of $h$-indecomposability. The central result in this paper is the following: Theorem. Let $\mathscr F$ be the class of all meromorphic functions $f(z)$ on the unit disk. A set $E$ on the boundary of the disk is a set of uniqueness for the class $\mathscr F$ and for the limit values over $h$-angles if and only if $E$ is $h$-indecomposable. Bibliography: 13 titles.
@article{SM_1988_61_2_a3,
     author = {Yu. V. Pomel'nikov},
     title = {Boundary uniqueness theorems for meromorphic functions},
     journal = {Sbornik. Mathematics},
     pages = {321--334},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a3/}
}
TY  - JOUR
AU  - Yu. V. Pomel'nikov
TI  - Boundary uniqueness theorems for meromorphic functions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 321
EP  - 334
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a3/
LA  - en
ID  - SM_1988_61_2_a3
ER  - 
%0 Journal Article
%A Yu. V. Pomel'nikov
%T Boundary uniqueness theorems for meromorphic functions
%J Sbornik. Mathematics
%D 1988
%P 321-334
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a3/
%G en
%F SM_1988_61_2_a3
Yu. V. Pomel'nikov. Boundary uniqueness theorems for meromorphic functions. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 321-334. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a3/

[1] Riesz F., Riesz M., “Uber die Randwerte einer Analitischen Function”, 4 Cong. Scand. Math., 1916, 27–44 | Zbl

[2] Luzin N. P., Privalov I. I., “Sur lunicite et multiplicite des fonctions analitiques”, Ann. Sc. de l'Ecole Normale, 42 (1925), 143–191

[3] Dolzhenko E. P., “Granichnye svoistva proizvolnykh funktsii”, Izv. AN SSSR. Ser. matem., 31 (1967), 3–14 | Zbl

[4] Pomelnikov Yu. V., Suvorov G. D., “Novoe semeistvo konformno-invariantnykh metrizuemykh bikompaktnykh rasshirenii ploskoi oblasti”, DAN SSSR, 235:5 (1977), 1017–1019 | MR

[5] Privalov I. I., Granichnye svoistva analiticheskikh funktsii, Gostekhizdat, M., 1950

[6] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971 | MR

[7] Pomelnikov Yu. V., Bikompaktnye rasshireniya i granichnye svoistva funktsii, Dep. v VINITI, No 3900-82, Donetsk, 1982

[8] Barth K. F., Shneider W. J., “On the imposibility for extending the Riesz uniqueness theorem to functions of slow growth”, Ann. Acad. Sci. Fenn. Ser. A1., 1968, no. 432, 1–9 | MR

[9] Saks S., Teoriya integrala, IL, M., 1949

[10] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[11] Gelbaum B., Olmsted Dzh., Kontrprimery v analize, Mir, M., 1967 | Zbl

[12] Khardi G. G., Litllvud D. E., Polia G., Neravenstva, IL, M., 1948

[13] Pomelnikov Yu. V., “O granichnykh teoremakh edinstvennosti dlya analiticheskikh i meromorfnykh funktsii”, DAN SSSR, 277:3 (1984), 548–551 | MR