Singular numbers of a~weighted convolution operator
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 309-319
Voir la notice de l'article provenant de la source Math-Net.Ru
This article studies a convolution operator on $[0,2\pi]$ with $2\pi$-periodic kernel. The operator acts from $L_2(0,2\pi)$ to $L_2(0,2\pi;\mu)$ where $\mu$ is a Borel measure. An asymptotic formula is obtained for the singular numbers in the case of kernels satisfying a certain regularity condition and of measures with continuous densities. Examples and counterexamples are given.
Bibliography: 7 titles.
@article{SM_1988_61_2_a2,
author = {O. G. Parfenov},
title = {Singular numbers of a~weighted convolution operator},
journal = {Sbornik. Mathematics},
pages = {309--319},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a2/}
}
O. G. Parfenov. Singular numbers of a~weighted convolution operator. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 309-319. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a2/