Some boundary value problems for elliptic equations, and the Lie algebras connected with them. II
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 495-527 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article presents detailed results on solvability and regularity of solutions for the noncoercive boundary value problem $lu=f$ in $\Omega$, $Au=g$ on $\partial\Omega$, where $l$ is a second-order elliptic operator in a bounded region $\Omega\subset\mathbf R^{n+1}$, and $A$ is a second-order operator for which the Lopatinskii conditions are violated on a sufficiently arbitrary subset of $\partial\Omega$. In particular, the principal part of $A$ need not be of definite sign on $T^*(\partial\Omega)$, and this leads (with a view to obtaining well-posed formulations) to the additional condition $u=h$ on $\mu_1$ and to the allowance of a finite discontinuity of $u|_{\partial\Omega}$ on $\mu_2$, where $\mu_1$ and $\mu_2$ are submanifolds of $\partial\Omega$ of codimension 1. The paper encompasses a large part of the known results on the degenerate oblique derivative problem. Bibliography: 10 titles.
@article{SM_1988_61_2_a14,
     author = {B. P. Paneah},
     title = {Some boundary value problems for elliptic equations, and the {Lie} algebras connected with {them.~II}},
     journal = {Sbornik. Mathematics},
     pages = {495--527},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a14/}
}
TY  - JOUR
AU  - B. P. Paneah
TI  - Some boundary value problems for elliptic equations, and the Lie algebras connected with them. II
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 495
EP  - 527
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a14/
LA  - en
ID  - SM_1988_61_2_a14
ER  - 
%0 Journal Article
%A B. P. Paneah
%T Some boundary value problems for elliptic equations, and the Lie algebras connected with them. II
%J Sbornik. Mathematics
%D 1988
%P 495-527
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a14/
%G en
%F SM_1988_61_2_a14
B. P. Paneah. Some boundary value problems for elliptic equations, and the Lie algebras connected with them. II. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 495-527. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a14/

[1] Paneyakh B. P., “Nekotorye kraevye zadachi dlya ellipticheskikh uravnenii i svyazannye s nimi algebry Li”, Matem. sb., 126(168) (1985), 215 | MR | Zbl

[2] Egorov Yu. V., Kondratev V. A., “O zadache s kosoi proizvodnoi”, Matem. sb., 78(120) (1969), 148–176 | MR | Zbl

[3] Malyutov M. V., “O kraevoi zadache Puankare”, Tr. MMO, 20 (1969), 173–204 | Zbl

[4] Mazya V. G., Paneyakh B. P., “Vyrozhdayuschiesya ellipticheskie psevdodifferentsialnye operatory i zadacha s kosoi proizvodnoi”, Tr. MMO, 31 (1974), 237–295

[5] Mazya V. G., “O vyrozhdayuscheisya zadache s kosoi proizvodnoi”, Matem. sb., 87(129) (1972), 417–457

[6] Paneyakh B. P., “K teorii razreshimosti zadachi s kosoi proizvodnoi”, Matem. sb., 114(156) (1981), 226–268 | MR | Zbl

[7] Paneyakh B. P., “Neellipticheskie kraevye zadachi i svyazannye s nimi algebry Li”, DAN SSSR, 283:1 (1985), 49–53 | MR | Zbl

[8] Paneyakh B. P., “O razreshimosti uravnenii, ellipticheskikh vne podmnogoobrazii”, Differentsialnye uravneniya s chastnymi proizvodnymi., Novosibirsk, 1977, 150–151

[9] Khermander L., “Psevdodifferentsialnye operatory i neellipticheskie kraevye zadachi”, Psevdodifferentsialnye operatory, Mir, M., 1967, 166–296 | MR

[10] Roitberg Ya. A., “O granichnykh znacheniyakh obobschennykh reshenii ellipticheskikh uravnenii”, Matem. sb., 86(128) (1971), 248–267 | MR | Zbl