On normal bases of a~finite field
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 485-494
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In this paper irreducible polynomials $f(x)$ of degree $t$ are constructed over a finite field of characteristic $p>0$ with linearly independent roots, where the integer $t$ divides one of the numbers $p$, $q-1$, or $q+1$. Properties of normal bases of the field $F_{q^t}$ over $F_q$ formed by the roots $\{\omega_1,\dots,\omega_t\}$ of $f(x)$ are also studied. In particular, it is shown that the “multiplication table” of such a basis has the form $\omega_i\omega_j=\alpha_{i-j}\omega_i+\alpha_{j-1}\omega_j+\gamma$, $i\ne j$, $\alpha_k$, $\gamma\in F_q$. 
Bibliography: 3 titles.
			
            
            
            
          
        
      @article{SM_1988_61_2_a13,
     author = {V. M. Sidel'nikov},
     title = {On normal bases of a~finite field},
     journal = {Sbornik. Mathematics},
     pages = {485--494},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a13/}
}
                      
                      
                    V. M. Sidel'nikov. On normal bases of a~finite field. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 485-494. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a13/
