Compacta lying in the $n$-dimensional universal Menger compactum and
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of $n$-shape is defined for an arbitrary compactum, and it is proved that two $Z$-sets lying in the $(n+1)$-dimensional universal Menger compactum have homeomorphic complements in it precisely when their $n$-shapes are equal. Bibliography: 15 titles.
@article{SM_1988_61_2_a12,
     author = {A. Ch. Chigogidze},
     title = {Compacta lying in the $n$-dimensional universal {Menger} compactum and},
     journal = {Sbornik. Mathematics},
     pages = {471--484},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/}
}
TY  - JOUR
AU  - A. Ch. Chigogidze
TI  - Compacta lying in the $n$-dimensional universal Menger compactum and
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 471
EP  - 484
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/
LA  - en
ID  - SM_1988_61_2_a12
ER  - 
%0 Journal Article
%A A. Ch. Chigogidze
%T Compacta lying in the $n$-dimensional universal Menger compactum and
%J Sbornik. Mathematics
%D 1988
%P 471-484
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/
%G en
%F SM_1988_61_2_a12
A. Ch. Chigogidze. Compacta lying in the $n$-dimensional universal Menger compactum and. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/