Compacta lying in the $n$-dimensional universal Menger compactum and
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484
Voir la notice de l'article provenant de la source Math-Net.Ru
The concept of $n$-shape is defined for an arbitrary compactum, and it is proved that two $Z$-sets lying in the $(n+1)$-dimensional universal Menger compactum have homeomorphic complements in it precisely when their $n$-shapes are equal.
Bibliography: 15 titles.
@article{SM_1988_61_2_a12,
author = {A. Ch. Chigogidze},
title = {Compacta lying in the $n$-dimensional universal {Menger} compactum and},
journal = {Sbornik. Mathematics},
pages = {471--484},
publisher = {mathdoc},
volume = {61},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/}
}
A. Ch. Chigogidze. Compacta lying in the $n$-dimensional universal Menger compactum and. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/