Compacta lying in the $n$-dimensional universal Menger compactum and
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concept of $n$-shape is defined for an arbitrary compactum, and it is proved that two $Z$-sets lying in the $(n+1)$-dimensional universal Menger compactum have homeomorphic complements in it precisely when their $n$-shapes are equal. Bibliography: 15 titles.
@article{SM_1988_61_2_a12,
     author = {A. Ch. Chigogidze},
     title = {Compacta lying in the $n$-dimensional universal {Menger} compactum and},
     journal = {Sbornik. Mathematics},
     pages = {471--484},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/}
}
TY  - JOUR
AU  - A. Ch. Chigogidze
TI  - Compacta lying in the $n$-dimensional universal Menger compactum and
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 471
EP  - 484
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/
LA  - en
ID  - SM_1988_61_2_a12
ER  - 
%0 Journal Article
%A A. Ch. Chigogidze
%T Compacta lying in the $n$-dimensional universal Menger compactum and
%J Sbornik. Mathematics
%D 1988
%P 471-484
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/
%G en
%F SM_1988_61_2_a12
A. Ch. Chigogidze. Compacta lying in the $n$-dimensional universal Menger compactum and. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 471-484. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a12/

[1] Aleksandrov P. S., Pasynkov B. A., Vvedenie v teoriyu razmernosti, Nauka, M., 1973 | MR

[2] Bestvina M., Characterizing $k$-dimensional universal Menger compacta, Dissertation, Knoxville, 1984 | MR

[3] Borsuk K., Theory of shape, PWN, Warszawa, 1975 | MR | Zbl

[4] Bothe H., “Eine Einbettung $m$-dimensionaler Mengen in einen $(m+1)$-dimensionalen absoluten Retrakt”, Fund. Math., 51 (1962), 209–224 | MR

[5] Geoghegan R., Summerhill R., “Concerning the shapes finite-dimensional compacta”, Trans. Amer. Math. Soc., 179 (1973), 281–292 | DOI | MR | Zbl

[6] Dranishnikov A. N., “Absolyutnye ekstenzory v razmernosti $n$ i $n$-myagkie otobrazheniya, povyshayuschie razmernost”, UMN, 39:5 (1984), 55–95 | MR | Zbl

[7] Edwards R. D., “Characterizing infinite dimensional manifolds topologically (after Henryk Torunczyk)”, Seminaire Bourbaki, no. 540, 1978/79, 278–302 | MR

[8] Engelking R., Dimension Theory, PWN, Warszawa, 1978 | MR | Zbl

[9] Torunczyk H., “Characterizing Hilbert space topology”, Fund. Math., 111 (1981), 247–262 | MR | Zbl

[10] Hu S. T., Theory of Retracts, Wayne State University Press, Detroit, 1965 | MR | Zbl

[11] Chapman T. A., “On some applications of infinite-dimensional manifolds to the theorv of shape”, Fund. Math., 76 (1972), 181–193 | MR | Zbl

[12] Chapman T. A., “Shapes of finite-dimensional compacta”, Fund. Math., 76 (1972), 261–276 | MR | Zbl

[13] Chigogidze A. Ch., “Neschetnye stepeni pryamoi, naturalnogo ryada i $n$-myagkie otobrazheniya”, DAN SSSR, 278 (1984), 50–53 | MR | Zbl

[14] Chigogidze A. Ch., “Nebikompaktnye absolyutnye ekstenzory v razmernosti $n$, $n$-myagkie otobrazheniya i ikh primeneniya”, Izv. AN SSSR. Ser. matem., 50:1 (1986), 156–180 | MR | Zbl

[15] Schepin E. V., “Myagkie otobrazheniya mnogoobrazii”, UMN, 39:5 (1984), 209–224 | MR | Zbl