On the basis property for a certain part of the eigenvectors and associated vectors of a selfadjoint operator pencil
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $L(\lambda)=A+\lambda I+\lambda^2B$ be a quadratic pencil, where $A$ and $B$ are compact selfadjoint operators on a separable Hilbert space $\mathfrak H$. Two subsystems of eigenvectors and associated vectors are constructed for the pencil $L(\lambda)$, each of them forming a Riesz basis for $\mathfrak H$. Bibliography: 24 titles.
@article{SM_1988_61_2_a1,
     author = {A. S. Markus and V. I. Matsaev},
     title = {On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil},
     journal = {Sbornik. Mathematics},
     pages = {289--307},
     year = {1988},
     volume = {61},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/}
}
TY  - JOUR
AU  - A. S. Markus
AU  - V. I. Matsaev
TI  - On the basis property for a certain part of the eigenvectors and associated vectors of a selfadjoint operator pencil
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 289
EP  - 307
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/
LA  - en
ID  - SM_1988_61_2_a1
ER  - 
%0 Journal Article
%A A. S. Markus
%A V. I. Matsaev
%T On the basis property for a certain part of the eigenvectors and associated vectors of a selfadjoint operator pencil
%J Sbornik. Mathematics
%D 1988
%P 289-307
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/
%G en
%F SM_1988_61_2_a1
A. S. Markus; V. I. Matsaev. On the basis property for a certain part of the eigenvectors and associated vectors of a selfadjoint operator pencil. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/

[1] Shinbrot M., “Note on a nonlinear eigenvalue problem”, Proc. Amer. Math. Soc., 14 (1963), 552–559 | DOI | MR

[2] Askerov N. G., Krein S. G., Laptev G. I., “Ob odnom klasse nesamosopryazhennykh zadach”, DAN SSSR, 155 (1964), 499–502 | MR | Zbl

[3] Krein S. G., “O kolebaniyakh vyazkoi zhidkosti v sosude”, DAN SSSR, 159 (1964), 262–265 | MR

[4] Krein M. G., Langer G. K., “O nekotorykh matematicheskikh printsipakh lineinoi teorii dempfirovannykh kolebanii kontinuumov”, Tr. mezhdunar. simpoziuma po prilozh. teorii funktsii v mekhanike sploshnoi sredy, T. 2, Nauka, M., 1965, 283–322 | MR

[5] Askerov N. K., Krein S. G., Laptev G. I., “Zadacha o kolebaniyakh vyazkoi zhidkosti i svyazannye s nei operatornye uravneniya”, Funktsion. analiz i ego pril., 2:2 (1968), 21–31 | MR | Zbl

[6] Turner R. E. L., “A class of nonlinear eigenvalue problems”, J. Funct. Anal., 2 (1968), 297–322 | DOI | MR | Zbl

[7] Markus A. S., “O polnote chasti sobstvennykh i prisoedinennykh vektorov dlya nekotorykh nelineinykh spektralnykh zadach”, Funktsion. analiz, i ego pril., 5:4 (1971), 78–79 | MR | Zbl

[8] Markus A. S, Matsaev V. I., Russu G. I., “O nekotorykh obobscheniyakh teorii silno dempfirovannykh puchkov na sluchai puchkov proizvolnogo poryadka”, Acta sci. math. Szeged., 34 (1973), 245–271 | MR | Zbl

[9] Langer H., “Über eine Klasse nihtlinearer Eigenwertprobleme”, Acta sci. math. Szeged., 35 (1973), 73–86 | MR | Zbl

[10] Radzievskii G. V., “Kratnaya polnota kornevykh vektorov puchka M. V. Keldysha, vozmuschennogo analiticheskoi v kruge operator-funktsiei”, Matem. sb., 91(133) (1973), 310–335 | MR | Zbl

[11] Virozub A. I., Matsaev V. I., “O spektralnykh svoistvakh odnogo klassa samosopryazhennykh operator-funktsii”, Funktsion. analiz i ego pril., 8:1 (1974), 1–10 | MR | Zbl

[12] Kopachevskii N. D., Malye dvizheniya i normalnye kolebaniya sistemy tyazhelykh vyazkikh vraschayuschikhsya zhidkostei, Preprint FTINT AN USSR. No 33-77, FTINT, Kharkov, 1978

[13] Kopachevskii N. D., Malye dvizheniya i sobstvennye kolebaniya idealnoi vraschayuscheisya zhidkosti, Preprint FTINT AN USSR. No 38-77, FTINT, Kharkov, 1978

[14] Kopachevskii N. D., “O svoistvakh bazisnosti sistemy sobstvennykh i prisoedinennykh vektorov samosopryazhennogo operatornogo puchka $I-\lambda A-\lambda^{-1}B$”, Funktsion. analiz i ego pril., 15:2 (1981), 77–78 | MR

[15] Keldysh M. V., “O polnote sobstvennykh funktsii nekotorykh klassov nesamosopryazhennykh lineinykh operatorov”, UMN, 26:4 (1971), 15–41 | MR | Zbl

[16] Kostyuchenko A. G., Shkalikov A. A., “Samosopryazhennye kvadratichnye puchki operatorov i ellipticheskie zadachi”, Funktsion. analiz i ego pril., 17:2 (1983), 38–61 | MR | Zbl

[17] Abramov Yu. Sh., Variatsionnye metody v teorii operatornykh puchkov. Spektralnaya optimizatsiya, Izd-vo LGU, L., 1983 | MR | Zbl

[18] Akhiezer N. I., Glazman I. M., Teoriya lineinykh operatorov v gilbertovom prostranstve, Nauka, M., 1966 | MR | Zbl

[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[20] Gokhberg I. Ts., Laiterer Yu., “Faktooizatsiya operator-funktsii otnositelno kontura. III”, Math. Nachr., 55 (1973), 33–61 | DOI | MR

[21] Gokhberg I. Ts., Laiterer Yu., “Obschie teoremy o faktorizatsii operator-funktsii otnositelno kontura. I”, Acta sci. math. Szeged., 34 (1973), 103–120 | MR

[22] Eni V. M., “Ob ustoichivosti kornevogo chisla operatornogo puchka”, Izv. AN MSSR. Ser. fiz.-tekhn. i matem. nauk, 1966, no. 4, 78–81 | MR | Zbl

[23] Sigal E. I., “O kratnosti kharakteristicheskogo chisla proizvedeniya operator-funktsii”, Matem. issledovaniya, 5:1 (1970), 118–127 | MR | Zbl

[24] Markus A. S, Matsaev V. I., “Bazisnost podsistemy sobstvennykh i prisoedinennykh vektorov samosopryazhennogo operatornogo puchka”, Funktsion. analiz i ego pril., 21:1 (1987), 82–83 | MR | Zbl