On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $L(\lambda)=A+\lambda I+\lambda^2B$ be a quadratic pencil, where $A$ and $B$ are compact selfadjoint operators on a separable Hilbert space $\mathfrak H$. Two subsystems of eigenvectors and associated vectors are constructed for the pencil $L(\lambda)$, each of them forming a Riesz basis for $\mathfrak H$. 
Bibliography: 24 titles.
			
            
            
            
          
        
      @article{SM_1988_61_2_a1,
     author = {A. S. Markus and V. I. Matsaev},
     title = {On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil},
     journal = {Sbornik. Mathematics},
     pages = {289--307},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/}
}
                      
                      
                    TY - JOUR AU - A. S. Markus AU - V. I. Matsaev TI - On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil JO - Sbornik. Mathematics PY - 1988 SP - 289 EP - 307 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/ LA - en ID - SM_1988_61_2_a1 ER -
%0 Journal Article %A A. S. Markus %A V. I. Matsaev %T On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil %J Sbornik. Mathematics %D 1988 %P 289-307 %V 61 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/ %G en %F SM_1988_61_2_a1
A. S. Markus; V. I. Matsaev. On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/
