On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L(\lambda)=A+\lambda I+\lambda^2B$ be a quadratic pencil, where $A$ and $B$ are compact selfadjoint operators on a separable Hilbert space $\mathfrak H$. Two subsystems of eigenvectors and associated vectors are constructed for the pencil $L(\lambda)$, each of them forming a Riesz basis for $\mathfrak H$. Bibliography: 24 titles.
@article{SM_1988_61_2_a1,
     author = {A. S. Markus and V. I. Matsaev},
     title = {On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil},
     journal = {Sbornik. Mathematics},
     pages = {289--307},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/}
}
TY  - JOUR
AU  - A. S. Markus
AU  - V. I. Matsaev
TI  - On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 289
EP  - 307
VL  - 61
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/
LA  - en
ID  - SM_1988_61_2_a1
ER  - 
%0 Journal Article
%A A. S. Markus
%A V. I. Matsaev
%T On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil
%J Sbornik. Mathematics
%D 1988
%P 289-307
%V 61
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/
%G en
%F SM_1988_61_2_a1
A. S. Markus; V. I. Matsaev. On the basis property for a~certain part of the eigenvectors and associated vectors of a~selfadjoint operator pencil. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 289-307. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a1/