@article{SM_1988_61_2_a0,
author = {V. I. Arnautov},
title = {On the extension of the ring topology of a~$\sigma$-bounded field to a~simple transcendental extension of the field},
journal = {Sbornik. Mathematics},
pages = {271--287},
year = {1988},
volume = {61},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/}
}
TY - JOUR AU - V. I. Arnautov TI - On the extension of the ring topology of a $\sigma$-bounded field to a simple transcendental extension of the field JO - Sbornik. Mathematics PY - 1988 SP - 271 EP - 287 VL - 61 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/ LA - en ID - SM_1988_61_2_a0 ER -
V. I. Arnautov. On the extension of the ring topology of a $\sigma$-bounded field to a simple transcendental extension of the field. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/
[1] Arnautov V. I., “Prodolzhenie lokalno ogranichennoi topologii polya na ego prostoe transtsendentnoe rasshirenie”, Algebra i logika, 20:50 (1981), 511–521 | MR | Zbl
[2] Arnautov V. I., Vizitiu V. N., “Prodolzhenie lokalno ogranichennoi topologii polya na ego algebraicheskoe rasshirenie”, Izv. AN MSSR. Ser. fiz.-tekh. i matem. nauk, 1974, no. 2, 29–43 | MR | Zbl
[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[4] Vizitiu V. N., “O prodolzheniyakh $m$-topologii kommutativnykh kolets”, Algebry i moduli. Matem. issl., 48 (1978), 24–39 | MR | Zbl
[5] Hinrichs L. A., “The existence of topologies of field extensions”, Trans. Amer. Math. Soc., 113:3 (1964), 397–405 | DOI | MR | Zbl
[6] Podewski K. P., “Transcedental extensions of field topologies on countable fields”, Proc. Amer. Math. Soc., 39 (1973), 33–38 | DOI | MR | Zbl