On the extension of the ring topology of a~$\sigma$-bounded field to a~simple transcendental extension of the field
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 271-287
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			If $\tau$ is a ring topology of a field $R$ such that $(R,\tau)$ is the union of countably many bounded sets, then there exists a ring topology $\hat\tau$ on a simple transcendental extension $R[x]$ of $R$ such that $(R[x],\hat\tau)$ is the union of countably many bounded sets and $\tau$ is the restriction of $\hat\tau$ to $R$. 
Bibliography: 6 titles.
			
            
            
            
          
        
      @article{SM_1988_61_2_a0,
     author = {V. I. Arnautov},
     title = {On the extension of the ring topology of a~$\sigma$-bounded field to a~simple transcendental extension of the field},
     journal = {Sbornik. Mathematics},
     pages = {271--287},
     publisher = {mathdoc},
     volume = {61},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/}
}
                      
                      
                    TY - JOUR AU - V. I. Arnautov TI - On the extension of the ring topology of a~$\sigma$-bounded field to a~simple transcendental extension of the field JO - Sbornik. Mathematics PY - 1988 SP - 271 EP - 287 VL - 61 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/ LA - en ID - SM_1988_61_2_a0 ER -
V. I. Arnautov. On the extension of the ring topology of a~$\sigma$-bounded field to a~simple transcendental extension of the field. Sbornik. Mathematics, Tome 61 (1988) no. 2, pp. 271-287. http://geodesic.mathdoc.fr/item/SM_1988_61_2_a0/
