Best approximations by rational vector-valued functions in Hardy spaces
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 137-145
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Interpolation conditions satisfied by a best norm approximation among all rational functions of total order $N$ are obtained for vector-valued functions in the Hardy space $H^2(E)$. Also, descriptions are given for bases in finite-dimensional subspaces invariant under the backward shift operator.
Bibliography: 9 titles.
			
            
            
            
          
        
      @article{SM_1988_61_1_a9,
     author = {S. A. Ivanov},
     title = {Best approximations by rational vector-valued functions in {Hardy} spaces},
     journal = {Sbornik. Mathematics},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/}
}
                      
                      
                    S. A. Ivanov. Best approximations by rational vector-valued functions in Hardy spaces. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 137-145. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/
