Best approximations by rational vector-valued functions in Hardy spaces
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 137-145

Voir la notice de l'article provenant de la source Math-Net.Ru

Interpolation conditions satisfied by a best norm approximation among all rational functions of total order $N$ are obtained for vector-valued functions in the Hardy space $H^2(E)$. Also, descriptions are given for bases in finite-dimensional subspaces invariant under the backward shift operator. Bibliography: 9 titles.
@article{SM_1988_61_1_a9,
     author = {S. A. Ivanov},
     title = {Best approximations by rational vector-valued functions in {Hardy} spaces},
     journal = {Sbornik. Mathematics},
     pages = {137--145},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/}
}
TY  - JOUR
AU  - S. A. Ivanov
TI  - Best approximations by rational vector-valued functions in Hardy spaces
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 137
EP  - 145
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/
LA  - en
ID  - SM_1988_61_1_a9
ER  - 
%0 Journal Article
%A S. A. Ivanov
%T Best approximations by rational vector-valued functions in Hardy spaces
%J Sbornik. Mathematics
%D 1988
%P 137-145
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/
%G en
%F SM_1988_61_1_a9
S. A. Ivanov. Best approximations by rational vector-valued functions in Hardy spaces. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 137-145. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a9/