On localizations in Morita contexts
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 129-135 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Morita context $(R,{}_RU_S,{}_SV_R,S)$ with a mapping $(\;{,}\;)\colon U\otimes_SV\to R$ defines for every $M\in{}_R\mathscr M$ a canonical homomorphism $\varphi_M\colon M\to \operatorname{Hom}_S(V,\operatorname{Hom}_R(U,M))$. Necessary and sufficient conditions are found for $\varphi_M$ to be an $r_I$-localization of the module $M$ for every $M\in{}_R\mathscr M$, where $r_I$ is the ideal torsion defined by the ideal $I=(U,V)$ of the ring $R$. In particular, these conditions are satisfied when ${}_R(U\otimes _SV)$ is a projective module with trace $I$. Bibliography: 9 titles.
@article{SM_1988_61_1_a8,
     author = {A. I. Kashu},
     title = {On localizations in {Morita} contexts},
     journal = {Sbornik. Mathematics},
     pages = {129--135},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/}
}
TY  - JOUR
AU  - A. I. Kashu
TI  - On localizations in Morita contexts
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 129
EP  - 135
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/
LA  - en
ID  - SM_1988_61_1_a8
ER  - 
%0 Journal Article
%A A. I. Kashu
%T On localizations in Morita contexts
%J Sbornik. Mathematics
%D 1988
%P 129-135
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/
%G en
%F SM_1988_61_1_a8
A. I. Kashu. On localizations in Morita contexts. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/

[1] Stenström B., Rings of quotients, Springer-Verlag, Berlin, 1975 | MR | Zbl

[2] Lambek I., Koltsa i moduli, Mir, M., 1971 | MR | Zbl

[3] Kashu A. I., Radikaly i krucheniya v modulyakh, Shtiintsa, Kishinev, 1983 | MR

[4] Ohtake K., “A generalization of Kato's theorem on Morita duality”, J. Pure Appl. Algebra, 17 (1980), 323–332 | DOI | MR | Zbl

[5] Ohtake K., “Equivalence between colocalization and localization in Abelian categories with applications to the theory of modules”, J. Algebra, 79:1 (1982), 169–205 | DOI | MR | Zbl

[6] Kato T., “Duality between colocalization and localization”, J. Algebra, 55:2 (1978), 351–374 | DOI | MR | Zbl

[7] Cohn P. M., “Morita equivalence and duality”, Queen Mary College Math. Notes, London, 1966

[8] Müller B. J., “The quotient category of a Morita context”, J. Algebra, 28:3 (1974), 389–407 | DOI | MR | Zbl

[9] Feis K., Algebra: koltsa, moduli, kategorii, t. 1, Mir, M., 1977