On localizations in Morita contexts
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 129-135
Voir la notice de l'article provenant de la source Math-Net.Ru
A Morita context $(R,{}_RU_S,{}_SV_R,S)$ with a mapping $(\;{,}\;)\colon U\otimes_SV\to R$ defines for every $M\in{}_R\mathscr M$ a canonical homomorphism $\varphi_M\colon M\to \operatorname{Hom}_S(V,\operatorname{Hom}_R(U,M))$.
Necessary and sufficient conditions are found for $\varphi_M$ to be an $r_I$-localization of the module $M$ for every $M\in{}_R\mathscr M$, where $r_I$ is the ideal torsion defined by the ideal $I=(U,V)$ of the ring $R$. In particular, these conditions are satisfied when
${}_R(U\otimes _SV)$ is a projective module with trace $I$.
Bibliography: 9 titles.
@article{SM_1988_61_1_a8,
author = {A. I. Kashu},
title = {On localizations in {Morita} contexts},
journal = {Sbornik. Mathematics},
pages = {129--135},
publisher = {mathdoc},
volume = {61},
number = {1},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/}
}
A. I. Kashu. On localizations in Morita contexts. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 129-135. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a8/