Zeros of holomorphic functions of finite order in the polydisc
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 103-112
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Estimates are proved for the volume of the zero set of a holomorphic function of finite order in the polydisc. These estimates make it possible to solve a problem posed by Stoll: namely, to prove that $\operatorname{ord}M=\min\{\operatorname{ord}f\}$ for an analytic subset $M$ of codimension 1 in the polydisc $D^n$ and holomorphic functions $f$ having $M$ as zero set. 
Bibliography: 7 titles.
			
            
            
            
          
        
      @article{SM_1988_61_1_a6,
     author = {P. L. Polyakov},
     title = {Zeros of holomorphic functions of finite order in the polydisc},
     journal = {Sbornik. Mathematics},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/}
}
                      
                      
                    P. L. Polyakov. Zeros of holomorphic functions of finite order in the polydisc. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 103-112. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/
