Zeros of holomorphic functions of finite order in the polydisc
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 103-112

Voir la notice de l'article provenant de la source Math-Net.Ru

Estimates are proved for the volume of the zero set of a holomorphic function of finite order in the polydisc. These estimates make it possible to solve a problem posed by Stoll: namely, to prove that $\operatorname{ord}M=\min\{\operatorname{ord}f\}$ for an analytic subset $M$ of codimension 1 in the polydisc $D^n$ and holomorphic functions $f$ having $M$ as zero set. Bibliography: 7 titles.
@article{SM_1988_61_1_a6,
     author = {P. L. Polyakov},
     title = {Zeros of holomorphic functions of finite order in the polydisc},
     journal = {Sbornik. Mathematics},
     pages = {103--112},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/}
}
TY  - JOUR
AU  - P. L. Polyakov
TI  - Zeros of holomorphic functions of finite order in the polydisc
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 103
EP  - 112
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/
LA  - en
ID  - SM_1988_61_1_a6
ER  - 
%0 Journal Article
%A P. L. Polyakov
%T Zeros of holomorphic functions of finite order in the polydisc
%J Sbornik. Mathematics
%D 1988
%P 103-112
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/
%G en
%F SM_1988_61_1_a6
P. L. Polyakov. Zeros of holomorphic functions of finite order in the polydisc. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 103-112. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a6/