Tchebycheff rational approximation in the disk, on the circle, and on a closed interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 87-102
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Suppose that the function $f$ is analytic in the disk $\{z:|z|1\}$ and continuous in its closure. Let $R_n(f)$ denote the best uniform approximation of $f$ by rational functions of degree at most $n$. In 1965 Dolzhenko established that if $\sum R_n(f)\infty$ then $f'$ belongs to the Hardy space $H_1$. The following converse of this result is obtained here: if $f'\in H_1$, then $R_n(f)=O(1/n)$. In combination with results of Peller, Semmes, and the author, this estimate yields, in particular, a description of the set of functions $f$ with 
$\bigl[\sum(2^{k\alpha }R_{2^k}(f))^q\bigr]^{1/q}\infty$, where $\alpha>1$ and $0$. 
Bibliography: 38 titles.
			
            
            
            
          
        
      @article{SM_1988_61_1_a5,
     author = {A. A. Pekarskii},
     title = {Tchebycheff rational approximation in the disk, on the circle, and on a closed interval},
     journal = {Sbornik. Mathematics},
     pages = {87--102},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a5/}
}
                      
                      
                    A. A. Pekarskii. Tchebycheff rational approximation in the disk, on the circle, and on a closed interval. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 87-102. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a5/
