On the differentials in the spectral sequence of a~group extension
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 49-63

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $1\to A\to G\to B\to1$ be a group extension in which $A$ is a torsion-free Abelian group. The concept of the $q$th-order characteristic class is introduced. This is an exact sequence of length 2 defined explicitly in terms of the original extension, and it coincides with the usual characteristic class when $q=0$. The main result is that the differentials $d^2_{pq}$ in the spectral sequence of the extension converging to the homology $H_*(G,Z)$ coincide with multiplication by the $q$th-order characteristic class. Analogous results can be formulated also for cohomology. Bibliography: 11 titles.
@article{SM_1988_61_1_a3,
     author = {Yu. V. Kuz'min},
     title = {On the differentials in the spectral sequence of a~group extension},
     journal = {Sbornik. Mathematics},
     pages = {49--63},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a3/}
}
TY  - JOUR
AU  - Yu. V. Kuz'min
TI  - On the differentials in the spectral sequence of a~group extension
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 49
EP  - 63
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a3/
LA  - en
ID  - SM_1988_61_1_a3
ER  - 
%0 Journal Article
%A Yu. V. Kuz'min
%T On the differentials in the spectral sequence of a~group extension
%J Sbornik. Mathematics
%D 1988
%P 49-63
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a3/
%G en
%F SM_1988_61_1_a3
Yu. V. Kuz'min. On the differentials in the spectral sequence of a~group extension. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 49-63. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a3/