Dihedral homology and cohomology. Basic notions and constructions
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 23-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The subject of the article is the foundations of the theory of dihedral homology and cohomology, the Hermitian analogue of cyclic homology and Connes–Tsygan cohomology. The article consists of four sections. In § 1 the notion of a dihedral object in a category is defined, and algebraic and homotopy properties of dihedral objects are studied. A detailed study is made of dihedral modules, i.e., dihedral objects in the category of modules over a commutative ring. § 2 contains several equivalent definitions of dihedral homology and cohomology of dihedral modules. One of them, in terms of derived functors, is convenient for obtaining general theorems on dihedral (co)homology; two others allow one to create effective means to compute this (co)homology. § 3 deals with establishing numerous connections between dihedral homology and other homology functors such as, say, Hochschild homology or cyclic homology. In § 4 the dihedral Chern character is introduced, and relations between Hermitian $K$-theory and dihedral homology are studied. Figures: 1. Bibliography: 20 titles.
@article{SM_1988_61_1_a2,
     author = {R. L. Krasauskas and S. V. Lapin and Yu. P. Solov'ev},
     title = {Dihedral homology and cohomology. {Basic} notions and constructions},
     journal = {Sbornik. Mathematics},
     pages = {23--47},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a2/}
}
TY  - JOUR
AU  - R. L. Krasauskas
AU  - S. V. Lapin
AU  - Yu. P. Solov'ev
TI  - Dihedral homology and cohomology. Basic notions and constructions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 23
EP  - 47
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a2/
LA  - en
ID  - SM_1988_61_1_a2
ER  - 
%0 Journal Article
%A R. L. Krasauskas
%A S. V. Lapin
%A Yu. P. Solov'ev
%T Dihedral homology and cohomology. Basic notions and constructions
%J Sbornik. Mathematics
%D 1988
%P 23-47
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a2/
%G en
%F SM_1988_61_1_a2
R. L. Krasauskas; S. V. Lapin; Yu. P. Solov'ev. Dihedral homology and cohomology. Basic notions and constructions. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 23-47. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a2/

[1] Connes A., “Non Commutative differential geometry. Part II. De Rham homology and non commutative algebra”, Publ. Math. I.H.E.S., 1985

[2] Tsygan B. L., “Gomologii matrichnykh algebr Li nad koltsami i gomologii Khokhshilda”, UMN, 38:2 (1983), 217–218 | MR | Zbl

[3] Tsygan B. L., “O gomologiyakh nekotorykh matrichnykh superalgebr Li”, Funktsion. analiz i ego pril., 20:2 (1986), 90–91 | MR | Zbl

[4] Loday J. L., Quillen D., “Cyclic homology and the Lie algebra Homology of matrices”, Comment. Math. Helv., 59 (1984), 565–591 | DOI | MR | Zbl

[5] Krasauskas R. L., Lapin S. V., Solovev Yu. P., “Diedralnye gomologii i kogomologii”, Vestn. MGU. Ser. 1. Matem., mekh., 1987, no. 4 | MR

[6] Gabriel P., Tsisman M., Kategorii chastnykh i teoriya gomotopii, Mir, M., 1971 | MR | Zbl

[7] Connes A., “Cohomologie cyclique et foncteurs Est$^n$”, C. R. Acad. Sci. Paris, 1983, no. 296, 953–958 | MR | Zbl

[8] Grothendieck A., Théorie de la descente, Seminaire Bourbaki. 12$^e$ Année, 195, 1959/1960

[9] Milnor J., “The realization of a semi-simplical complex”, Ann. Math., 65 (1957), 357–362 | DOI | MR | Zbl

[10] Segal G., “Classifing spaces and spectral sequences”, Publ. Math. I.H.E.S., 1968, no. 34, 105–112 | MR | Zbl

[11] Burghelea D., Cyclic homology and algebraic $K$-theory of spaces II, Proc. Summer Institute on alg. $K$-theory (Boulder Colorado, 1983) | Zbl

[12] Karoubi M., “Homologie cyclique des groups et des algèbres”, C. R. Acad. Sci. Par, 1983, no. 297, 381–384 | MR | Zbl

[13] Kartan A., Eilenberg S., Gomologicheskaya algebra, IL, M., 1960

[14] Maklein S., Gomologiya, Mir, M., 1966

[15] Bass H., “Unitary algebraic $K$-theory”, Lect. Notes Math., 343, 1973, 57–266 | MR

[16] Quillen D., “On the cohomology and $K$-theory of the general linear groups over a finite field”, Ann. Math., 96 (1972), 552–586 | DOI | MR | Zbl

[17] Adams Dzh., Beskonechnokratnye prostranstva petel, Mir, M., 1982 | MR

[18] Karoubi M., “Théorie de Quillen et homologie du groupe orthogonal”, Ann. Math., 112 (1980), 207–257 | DOI | MR | Zbl

[19] Karoubi M., “Homologie cyclique et $K$-théorie algébrique I”, C. R. Acad. Sci. Paris, 1983, no. 297, 447–451 | MR

[20] Karoubi M., “Homologie cyclique et $K$-theorie algebrique II”, C. R. Acad. Sci. Paris, 1983, no. 297, 513–516 | MR | Zbl