Nonassociative topological bimodules
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 259-270

Voir la notice de l'article provenant de la source Math-Net.Ru

The local structure of locally compact bimodules over compact rings is studied. It is shown that topologically simple compact alternative, Jordan, and restricted Lie rings are finite. An example of a simple compact nondiscrete Lie ring is given. The quasiregular radical of an alternative or Jordan compact ring is characterized as the intersection of the kernels of all its locally compact topologically irreducible birepresentations. Bibliography: 17 titles.
@article{SM_1988_61_1_a18,
     author = {A. M. Slin'ko},
     title = {Nonassociative topological bimodules},
     journal = {Sbornik. Mathematics},
     pages = {259--270},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a18/}
}
TY  - JOUR
AU  - A. M. Slin'ko
TI  - Nonassociative topological bimodules
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 259
EP  - 270
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a18/
LA  - en
ID  - SM_1988_61_1_a18
ER  - 
%0 Journal Article
%A A. M. Slin'ko
%T Nonassociative topological bimodules
%J Sbornik. Mathematics
%D 1988
%P 259-270
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a18/
%G en
%F SM_1988_61_1_a18
A. M. Slin'ko. Nonassociative topological bimodules. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 259-270. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a18/