On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Consider the spectral problem ($0) $$ -y''(x)=\lambda\rho (x)y(x);\quad y(0)=y(1)=0;\quad \rho(x)>0;\quad \rho(x)\in C_{[0,1]}. $$ Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$. Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then $$ \lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty). $$ 2. For any $\varepsilon>0$ there exists a continuous weight $\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that $$ \varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty). $$} Bibliography: 17 titles.
@article{SM_1988_61_1_a13,
     author = {M. M. Gekhtman},
     title = {On the asymptotic behavior of the normalized eigenfunctions of the {Sturm-Liouville} problem on a~finite interval},
     journal = {Sbornik. Mathematics},
     pages = {185--199},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/}
}
TY  - JOUR
AU  - M. M. Gekhtman
TI  - On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 185
EP  - 199
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/
LA  - en
ID  - SM_1988_61_1_a13
ER  - 
%0 Journal Article
%A M. M. Gekhtman
%T On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval
%J Sbornik. Mathematics
%D 1988
%P 185-199
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/
%G en
%F SM_1988_61_1_a13
M. M. Gekhtman. On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a finite interval. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/

[1] Steklov V. A., “Une methode de la solution du probleme de development des fonctions en series de polynomes de Tchebysheff independante de la theorie de fermeture”, Izv. Ros. AN, 1921, 281–326

[2] Suetin P. K., “Problema V. A. Steklova v teorii ortogonalnykh mnogochlenov”, Itogi nauki i tekhniki. Matematicheskii analiz, 15, VINITI, M., 1977, 5–82 | MR

[3] Geronimus Ya. L., Mnogochleny, ortogonalnye na okruzhnosti i otrezke, Fizmatgiz, M., 1958 | Zbl

[4] Rakhmanov E. A., “Ob otsenkakh rosta ortogonalnykh mnogochlenov, ves kotorykh otgranichen ot nulya”, Matem. sb., 114(156) (1981), 269–298 | MR

[5] Krein M. G., “Ob obratnykh zadachakh dlya neodnorodnoi struny”, DAN SSSR, 82:5 (1952), 669–672 | MR | Zbl

[6] Steklov V. A., Ob asimptoticheskom vyrazhenii nekotorykh funktsii, opredelyaemykh lineinym differentsialnym uravneniem vtorogo poryadka, i ikh primenenii k zadache razlozheniya proizvolnoi funktsii v ryad po etim funktsiyam, Izd-vo KhGU, Kharkov, 1956

[7] Gekhtman M. M., Zagirov Yu. M., Yakubov V. Ya., “Ob asimptoticheskom povedenii sobstvennykh funktsii spektralnoi zadachi Shturma–Liuvillya”, Funktsion. analiz i ego pril., 17:3 (1983), 71–72 | MR | Zbl

[8] Levitan B. M., “O razlozhenii po sobstvennym funktsiyam samosopryazhennogo uravneniya v chastnykh proizvodnykh”, Tr. MMO., 5 (1956), 269–298 | MR | Zbl

[9] Kurant R., Gilbert D., Metody matematicheskoi fiziki, T. 1, Gostekhizdat, M., 1951

[10] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[11] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[12] Trikomi F., Differentsialnye uravneniya, IL, M., 1962

[13] Landau L. D., Lifshits E. M., Mekhanika, Fizmatgiz, M., 1958 | Zbl

[14] Hörmander L., “The Spectral function of an elliptic operator”, Acta Math., 121:3–4 (1968), 193–218 | DOI | MR | Zbl

[15] Egorov Yu. V., Kondratev V. A., “O nekotorykh otsenkakh sobstvennykh funktsii ellipticheskogo operatora”, Vestn. MGU. Ser. 1. Matem., mekh., 1985, no. 4, 32–34 | Zbl

[16] Yakubov V. Ya., “Otsenki dlya normirovannykh v $L_2$ sobstvennykh funktsii ellipticheskogo operatora”, DAN SSSR, 274:1 (1984), 35–37 | MR

[17] Glazman I. M., Pryamye metody kachestvennogo spektralnogo analiza singulyarnykh differentsialnykh operatorov, M., 1963 | MR | Zbl