On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider the spectral problem ($0$) $$ -y''(x)=\lambda\rho (x)y(x);\quad y(0)=y(1)=0;\quad \rho(x)>0;\quad \rho(x)\in C_{[0,1]}. $$ Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$. Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then $$ \lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty). $$ 2. For any $\varepsilon>0$ there exists a continuous weight $\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that $$ \varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty). $$} Bibliography: 17 titles.
@article{SM_1988_61_1_a13,
     author = {M. M. Gekhtman},
     title = {On the asymptotic behavior of the normalized eigenfunctions of the {Sturm-Liouville} problem on a~finite interval},
     journal = {Sbornik. Mathematics},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/}
}
TY  - JOUR
AU  - M. M. Gekhtman
TI  - On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 185
EP  - 199
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/
LA  - en
ID  - SM_1988_61_1_a13
ER  - 
%0 Journal Article
%A M. M. Gekhtman
%T On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval
%J Sbornik. Mathematics
%D 1988
%P 185-199
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/
%G en
%F SM_1988_61_1_a13
M. M. Gekhtman. On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/