On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Consider the spectral problem ($0$) 
$$
-y''(x)=\lambda\rho (x)y(x);\quad 
y(0)=y(1)=0;\quad
\rho(x)>0;\quad
\rho(x)\in C_{[0,1]}.
$$ Let $\lambda_n(\rho)$ and $u_n(x,\rho)$ ($n\in N$) be the eigenvalues and the corresponding eigenfunctions, normalized in $L_2(0,1;\rho)$. 
Theorem. 1. {\it If the weight function $\rho(x)$, continuous on $[0,1]$, is positive, then 
$$
\lim\lambda_n^{-1/4}(\rho)\max_{0\le x\le1}|u_n(x,\rho)|=0\qquad(n\to\infty).
$$ 2. For any $\varepsilon>0$ there exists a continuous weight 
$\rho_0(x,\varepsilon)>0\quad(x\in[0,1])$ such that 
$$
\varlimsup\lambda_n^{-1/4+\varepsilon}(\rho_0)|u_n(1/2,\rho_0)|=0\qquad(n\to\infty).
$$}
Bibliography: 17 titles.
			
            
            
            
          
        
      @article{SM_1988_61_1_a13,
     author = {M. M. Gekhtman},
     title = {On the asymptotic behavior of the normalized eigenfunctions of the {Sturm-Liouville} problem on a~finite interval},
     journal = {Sbornik. Mathematics},
     pages = {185--199},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/}
}
                      
                      
                    TY - JOUR AU - M. M. Gekhtman TI - On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval JO - Sbornik. Mathematics PY - 1988 SP - 185 EP - 199 VL - 61 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/ LA - en ID - SM_1988_61_1_a13 ER -
M. M. Gekhtman. On the asymptotic behavior of the normalized eigenfunctions of the Sturm-Liouville problem on a~finite interval. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 185-199. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a13/
