Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 167-183 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $K$ be an algebraically closed field of characteristic $p>0$, $G$ a universal Chevalley group over $K$ with an irreducible root system $R$, $B$ a basis of $R$, $Q_+$ the set of radical weights that are nonnegative with respect to the natural ordering associated with $B$, $P_{++}$ the set of dominant weights, and $e(R)$ the maximum of the squares of the ratios of the lengths of the roots in $R$. It is well known that $e(R)=1$ if $R$ is of type $A_n$, $D_n$, $E_6$, $E_7$, or $E_8$, $e(R)=2$ if $R$ is of type $B_n$, $C_n$, or $F_4$, and $e(R)=3$ if $R$ is of type $G_2$. A rational representation $\pi\colon G\to\mathrm{GL}(V)$ is called infinitesimally irreducible if its differential $d\pi$ defines an irreducible representation of the Lie algebra $\mathfrak g$ of the group $G$. Let $\mathfrak g_{\mathbf C}$ be a simple complex Lie algebra with the same root system as $G$. In this paper it is proved that for $p>e(R)$ the system of weights of an infinitesimally irreducible representation $\pi$ of a group $G$ with highest weight $\lambda$ coincides with the system of weights of an irreducible complex representation $\pi_{\mathbf C}$ of a Lie algebra $\mathfrak g_{\mathbf C}$ with the same highest weight. In particular, the set of dominant weights of the representation is $(\lambda-Q_+)\cap P_{++}$. Bibliography: 7 titles.
@article{SM_1988_61_1_a12,
     author = {A. A. Premet},
     title = {Weights of infinitesimally irreducible representations of {Chevalley} groupsover a~field of prime characteristic},
     journal = {Sbornik. Mathematics},
     pages = {167--183},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a12/}
}
TY  - JOUR
AU  - A. A. Premet
TI  - Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 167
EP  - 183
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a12/
LA  - en
ID  - SM_1988_61_1_a12
ER  - 
%0 Journal Article
%A A. A. Premet
%T Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic
%J Sbornik. Mathematics
%D 1988
%P 167-183
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a12/
%G en
%F SM_1988_61_1_a12
A. A. Premet. Weights of infinitesimally irreducible representations of Chevalley groupsover a field of prime characteristic. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 167-183. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a12/

[1] Burbaki N., Gruppy i algebry Li: Gruppy Kokstera i sistemy Titsa, gruppy porozhdennye otrazheniyami, sistemy kornei, Mir, M., 1972 | MR | Zbl

[2] Burbaki N., Gruppy i algebry Li: Podalgebry Kartana, regulyarnye elementy, rasscheplyaemye poluprostye algebry Li, Mir, M., 1978 | MR

[3] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR | Zbl

[4] Suprunenko I. D., “Sokhranenie sistem vesov neprivodimykh predstavlenii algebraicheskoi gruppy i algebry Li tipa $A_l$ s ogranichennymi starshimi vesami pri reduktsii po modulyu $p$”, Izv. AN BSSR. Ser. fiz.-matem. nauk, 1983, no. 2, 18–22 | MR | Zbl

[5] Steinberg R., “Representations of algebraic groups”, Nagoya Math. J, 22 (1963), 33–56 | MR | Zbl

[6] Wong W. J., “Irreducible modular representations of finite Chevalley groups”, J. Algebra, 20 (1972), 355–367 | DOI | MR | Zbl

[7] Smith S., “Irreducible modules and parabolic subgroups”, J. Algebra, 75 (1982), 286–289 | DOI | MR | Zbl