Inherently nonfinitely based finite semigroups
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 155-166 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A locally finite variety is called inherently nonfinitely based if it is not contained in any finitely based locally finite variety. A finite universal algebra is called inherently nonfinitely based if it generates an inherently nonfinitely based variety. In this paper a description of inherently nonfinitely based finite semigroups is given; it is proved that the set of such semigroups is recursive and that the property of a finite semigroup to be inherently nonfinitely based is mainly determined by the structure of its subgroups. It is also shown that there exists a unique minimal inherently nonfinitely based variety of semigroups consisting not only of groups. It is not known whether there exists an inherently nonfinitely based variety of groups. Bibliography: 18 titles.
@article{SM_1988_61_1_a11,
     author = {M. V. Sapir},
     title = {Inherently nonfinitely based finite semigroups},
     journal = {Sbornik. Mathematics},
     pages = {155--166},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a11/}
}
TY  - JOUR
AU  - M. V. Sapir
TI  - Inherently nonfinitely based finite semigroups
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 155
EP  - 166
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a11/
LA  - en
ID  - SM_1988_61_1_a11
ER  - 
%0 Journal Article
%A M. V. Sapir
%T Inherently nonfinitely based finite semigroups
%J Sbornik. Mathematics
%D 1988
%P 155-166
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a11/
%G en
%F SM_1988_61_1_a11
M. V. Sapir. Inherently nonfinitely based finite semigroups. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 155-166. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a11/

[1] Tarski A., “Equational logic and equational theories of algebras”, Contributions to Math. Logic, North-Holland, Amsterdam, 1968, 278–288 | MR

[2] McKenzie R., “A new product of algebras and a type reduction theorem”, Alg. Univ., 18:1 (1984), 29–69 | DOI | MR | Zbl

[3] Murskii V. L., “O chisle $k$-elementnykh algebr s odnoi binarnoi operatsiei bez konechnogo bazisa tozhdestv”, Problemy kibernetiki, 35:1 (1979), 5–27 | MR | Zbl

[4] Perkins P., “Basic questions for general algebras”, Alg. Univ., 19:1 (1984), 16–23 | DOI | MR | Zbl

[5] McNulty G. F., Shallon C., “Inherently nonfinitely based finite algebras”, Lect. Notes Math., no. 1004, 1983, 206–231 | MR | Zbl

[6] Perkins P., “Bases of equational theoreis of semigroups”, J. Algebra, 11:2 (1969), 293–314 | DOI | MR

[7] Shevrin L. N., “Kvaziperiodicheskie polugruppy, razlozhimye v svyazku arkhimedovykh polugrupp”, 16 Vsesoyuz. algebr. konf. Tezisy. Ch. 1, L., 1981, 177–178

[8] Sapir M. V., “Problemy bernsaidovskogo tipa i konechnaya baziruemost v mnogoobraziyakh polugrupp”, Izv. AN SSSR. Ser. matem., 51:2 (1987), 319–340 | MR | Zbl

[9] Sapir M. V., “Problemy bernsaidovskogo tipa i tozhdestva konechnykh polugrupp”, 18 Vsesoyuz. algebr. konf. Tezisy soobschenii. Ch. 2, Kishinev, 1985, 151

[10] Neiman Kh., Mnogoobraziya grupp, Mir, M., 1969 | MR

[11] Klifford A., Preston G., Algebraicheskaya teoriya polugrupp, Mir, M., 1972 | Zbl

[12] Matematicheskaya entsiklopediya, t. 1–5, Sovetskaya entsiklopediya, M., 1977–1985

[13] Zimin A. I., “Blokiruyuschie mnozhestva termov”, Matem. sb., 119(161) (1982), 363–375 | MR

[14] Eilenberg S., Schutzenberger M. P., “On pseudovarieties”, Adv. Math., 19:3 (1976), 413–418 | DOI | MR | Zbl

[15] Sapir M. V., “Malye, krossovy i predelnye mnogoobraziya polugrupp”, 16 Vsesoyuz. algebr. konf. Tezisy. Ch. 1, L., 1981, 141–142

[16] Sapir M. V., “Algoritmicheskie problemy v mnogoobraziyakh polugrupp”, Izv. VUZov. Matem., 1985, 12, 71–74 | Zbl

[17] Algebraicheskaya teoriya avtomatov, yazykov i polugrupp, Mir, M., 1975

[18] Sapir M. V., Sukhanov E. V., “O mnogoobraziyakh periodicheskikh polugrupp”, Izv. VUZov. Matem., 1981, no. 4, 48–55 | MR | Zbl