Asymptotically almost periodic solutions of some linear evolution equations
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 1-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Asymptotically almost periodic (a.a.p.) solutions of the evolution equation $$ \frac{du}{dt}+A(t)u=f(t) $$ in certain Hilbert spaces are studied. Under the assumption of an a.a.p. operator $A(t)$ and function $f(t)$, it is proved that the solution $u(t)$ is a.a.p. in various Hilbert spaces, i.e., the solution can be represented in the form $u(t)=v(t)+\alpha(t)$, where $v(t)$ is an almost periodic function and $\alpha(t)\to0$ as $t\to\infty$ in the corresponding space. The first boundary value problem for a second-order parabolic equation is considered as an example. Bibliography. 12 titles.
@article{SM_1988_61_1_a0,
     author = {B. G. Ararktsyan},
     title = {Asymptotically almost periodic solutions of some linear evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {1--8},
     year = {1988},
     volume = {61},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/}
}
TY  - JOUR
AU  - B. G. Ararktsyan
TI  - Asymptotically almost periodic solutions of some linear evolution equations
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 1
EP  - 8
VL  - 61
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/
LA  - en
ID  - SM_1988_61_1_a0
ER  - 
%0 Journal Article
%A B. G. Ararktsyan
%T Asymptotically almost periodic solutions of some linear evolution equations
%J Sbornik. Mathematics
%D 1988
%P 1-8
%V 61
%N 1
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/
%G en
%F SM_1988_61_1_a0
B. G. Ararktsyan. Asymptotically almost periodic solutions of some linear evolution equations. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/

[1] Fréchet M., “Les fonctions asymptotiement presque-periodiques”, Revue Scientifique, 79 (1941), 542–552 | MR

[2] Amerio L., Prouse G., Almost periodic functions and functional equations, Van Nostrand, New York, 1971 | MR | Zbl

[3] Levitan B. M., Zhikov V. V., Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[4] Pankov A. A., Ogranichennye i pochti periodicheskie resheniya nelineinykh differentsialnykh operatornykh uravnenii, Naukova dumka, Kiev, 1985 | MR

[5] Ararktsyan B. G., “Povedenie pri $t\to\infty$ reshenii nekotorykh operatornykh uravnenii”, Izv. AN Arm. SSR. Matematika, VIII:3 (1973), 226–234

[6] Smirnov V. I., Kurs vysshei matematiki, t. V, Fizmatgiz, M., 1960

[7] Danford N., Shvarts Dzh., Lineinye operatory, Izd-vo IL, M., 1962

[8] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[9] Haraux A., “Nonlinear evolution equation: global behavior of solutions”, Springer Lecture Notes in Math., 841, 1981 | MR | Zbl

[10] Haraux A., “Large time behavior of the solutions to some nonlinear evolution equation”, Commentationes Mathematicae Universitaties Caroline, 26 (1985), 91–109 | MR | Zbl

[11] Lovicar V., “Theorem of Fréchet and asymptotically almost periodic solutions of some nonlinear equations of hyperbolic type”, Nonlinear evolution equat. and pot. theory., 1982, 108–115

[12] Ararktsyan B. G., “Ob asimptoticheski pochti periodicheskikh resheniyakh nekotorykh nestatsionarnykh granichnykh zadach”, Differents. uravneniya, VIII:3 (1972), 640–644