Asymptotically almost periodic solutions of some linear evolution equations
Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 1-8

Voir la notice de l'article provenant de la source Math-Net.Ru

Asymptotically almost periodic (a.a.p.) solutions of the evolution equation $$ \frac{du}{dt}+A(t)u=f(t) $$ in certain Hilbert spaces are studied. Under the assumption of an a.a.p. operator $A(t)$ and function $f(t)$, it is proved that the solution $u(t)$ is a.a.p. in various Hilbert spaces, i.e., the solution can be represented in the form $u(t)=v(t)+\alpha(t)$, where $v(t)$ is an almost periodic function and $\alpha(t)\to0$ as $t\to\infty$ in the corresponding space. The first boundary value problem for a second-order parabolic equation is considered as an example. Bibliography. 12 titles.
@article{SM_1988_61_1_a0,
     author = {B. G. Ararktsyan},
     title = {Asymptotically almost periodic solutions of some linear evolution equations},
     journal = {Sbornik. Mathematics},
     pages = {1--8},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/}
}
TY  - JOUR
AU  - B. G. Ararktsyan
TI  - Asymptotically almost periodic solutions of some linear evolution equations
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 1
EP  - 8
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/
LA  - en
ID  - SM_1988_61_1_a0
ER  - 
%0 Journal Article
%A B. G. Ararktsyan
%T Asymptotically almost periodic solutions of some linear evolution equations
%J Sbornik. Mathematics
%D 1988
%P 1-8
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/
%G en
%F SM_1988_61_1_a0
B. G. Ararktsyan. Asymptotically almost periodic solutions of some linear evolution equations. Sbornik. Mathematics, Tome 61 (1988) no. 1, pp. 1-8. http://geodesic.mathdoc.fr/item/SM_1988_61_1_a0/