The regularity of maps of Riemannian manifolds that minimize the multidimensional Dirichlet functional
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 395-412 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The author establishes the regularity of maps from Riemannian manifolds of small dimensions into certain homogeneous spaces with metrics near to the invariant metrics that locally minimize the multidimensional Dirichlet functional (energy). Bibliography: 21 titles.
@article{SM_1988_60_2_a9,
     author = {A. V. Tyrin},
     title = {The regularity of~maps of {Riemannian} manifolds that minimize the multidimensional {Dirichlet} functional},
     journal = {Sbornik. Mathematics},
     pages = {395--412},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a9/}
}
TY  - JOUR
AU  - A. V. Tyrin
TI  - The regularity of maps of Riemannian manifolds that minimize the multidimensional Dirichlet functional
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 395
EP  - 412
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a9/
LA  - en
ID  - SM_1988_60_2_a9
ER  - 
%0 Journal Article
%A A. V. Tyrin
%T The regularity of maps of Riemannian manifolds that minimize the multidimensional Dirichlet functional
%J Sbornik. Mathematics
%D 1988
%P 395-412
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a9/
%G en
%F SM_1988_60_2_a9
A. V. Tyrin. The regularity of maps of Riemannian manifolds that minimize the multidimensional Dirichlet functional. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 395-412. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a9/

[1] Eells J., Lemaire L., “A report on harmonic maps”, Bull. London Math. Soc., 10 (1978), 1–68 | DOI | MR | Zbl

[2] Eells J., Lemaire L., “Selected topics in harmonic maps”, Regional conf. series in math., no. 50, N.S.F., USA, 1983 | MR

[3] Alber S. I., “Topologiya funktsionalnykh mnogoobrazii i variatsionnoe ischislenie v tselom”, UMN, 25:4 (1970), 57–123 | MR

[4] Eells J., Sampson J. H., “Harmonic mappings of riemannian manifolds”, Amer. J. Math., 86 (1964), 109–160 | DOI | MR | Zbl

[5] Hartman P., “On homotopic harmonic maps”, Cand. J. Math., 19 (1968), 673–687 | MR

[6] Hamilton R., Harmonic maps of manifolds with boundary, Springer-Verlag, Berlin, 1976 | MR

[7] Fomenko A. T., Variatsionnye metody v topologii, Nauka, M., 1982 | MR

[8] Pluzhnikov A. I., Zadacha minimizatsii funktsionala energii, Dep. v VINITI 01.08.84, No 5584–84, 1984 | Zbl

[9] Schoen R., Uhlenbeck K., “A regularity theory for harmonic maps”, J. Diff. Geom., 17 (1982), 307–335 | MR | Zbl

[10] Schoen R., Uhlenbeck K., “Boundary regularity and the Dirichlet problem for harmonic maps”, J. Diff. Geom., 18 (1983), 253–268 | MR | Zbl

[11] Schoen R., Uhlenbeck K., “Regularity of minimizing harmonic maps into the sphere”, Invent. Math., 78 (1984), 89–101 | DOI | MR

[12] Tyrin A. V., “Kriticheskie tochki mnogomernogo funktsionala Dirikhle”, Matem. sb., 124(166) (1984), 146–158 | MR

[13] Smith R. T., “The second variation formula for harmonic mappings”, Proc. Amrr. Math. Soc., 47 (1975), 229–236 | DOI | MR | Zbl

[14] Simons J., “Minimal varieties in riemannian manifolds”, Ann. Math., 88 (1968), 66–106 | DOI | MR

[15] Leung P. F., “On the stability of harmonic maps”, Lecture Notes in Math., 1982, no. 949, 122–129 | MR | Zbl

[16] Lawson H. B., Simons J., “On stable currents and their applications to global problems in real and complex geometry”, Ann. Math., 98 (1973), 427–450 | DOI | MR | Zbl

[17] Morrey C. B., “The problem of Plateau on a riemannian manifold”, Ann. Math., 49 (1948), 807–851 | DOI | MR | Zbl

[18] Manturov O. V., “Odnorodnye prostranstva s neprivodimym predstavleniem gruppy izotropii”, Tr. sem. po vekt. i tenz. analizu, 13 (1966), 68–145 | MR | Zbl

[19] Sacks J., Uhlenbeck K., “The existence of minimal immersions of the 2-spheres”, Ana Math., 113 (1981), 1–24 | DOI | MR | Zbl

[20] Sugiura M., “Representations of compact groups realized by spherical functions on a symmetric space”, Proc. Japan Acad., 38 (1962), 111–113 | DOI | MR | Zbl

[21] Hildebrandt S., Widman K. O., “On the Hölder continuity of weak solutions of quasilinear elliptic systems of second order”, Ann. Scuola Norm. Sup. Pisa., 4 (1977), 145–178 | MR