Convergence of simultaneous Padé approximants for a class of functions
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 385-394 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper investigates rational approximations of a Markov function that have the highest order of contact with it at infinity, and whose denominators are invariant under multiplication of their argument by a root of unity of some fixed degree (such approximations are used in many number-theoretical problems). The approximations converge under mild restrictions on the measure. Moreover, the denominators of the approximants and the corresponding functions of the second kind have logarithmic asymptotics expressible in terms of a certain extremal measure which, in the simplest case, is the Tchebycheff measure. An explicit form is found for the extremal measure in the general case; in fact, the inverse of the distribution function is expressed in terms of elementary functions, the power moments are calculated, and the Markov function of the extremal measure is connected with algebraic equations and generalized hypergeometric functions. Bibliography: 10 titles.
@article{SM_1988_60_2_a8,
     author = {V. N. Sorokin},
     title = {Convergence of~simultaneous {Pad\'e} approximants for a~class of functions},
     journal = {Sbornik. Mathematics},
     pages = {385--394},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a8/}
}
TY  - JOUR
AU  - V. N. Sorokin
TI  - Convergence of simultaneous Padé approximants for a class of functions
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 385
EP  - 394
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a8/
LA  - en
ID  - SM_1988_60_2_a8
ER  - 
%0 Journal Article
%A V. N. Sorokin
%T Convergence of simultaneous Padé approximants for a class of functions
%J Sbornik. Mathematics
%D 1988
%P 385-394
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a8/
%G en
%F SM_1988_60_2_a8
V. N. Sorokin. Convergence of simultaneous Padé approximants for a class of functions. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 385-394. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a8/

[1] Wall H. S., Analytic theory of continued fractions, Van Nostrand, New York, 1948 | MR | Zbl

[2] Markov A. A., Izbrannye trudy po teorii nepreryvnykh drobei i teorii funktsii, naimenee uklonyayuschikhsya ot nulya, Gostekhizdat, M., 1948 | MR

[3] Nikishin E. M., “O sovmestnykh approksimatsiyakh Pade”, Matem. sb., 113(155) (1980), 499–519 | MR | Zbl

[4] Kalyagin V. A., “Ob odnom klasse polinomov, opredelyaemykh dvumya sootnosheniyami ortogonalnosti”, Matem. sb., 110(152) (1979), 609–627 | MR

[5] Gonchar A. A., Rakhmanov E. A., “O skhodimosti sovmestnykh approksimatsii Pade dlya sistem funktsii markovskogo tipa”, Tr. MIAN, 157, 1981, 31–48 | MR | Zbl

[6] Segë G., Ortogonalnye mnogochleny, Fizmatgiz, M., 1962

[7] Tsuji M., “On a power series wich has only algebraic singularities on its convergence circle”, Japan J. Math., 3 (1926), 69–85 | Zbl

[8] Vatson G. N., Teoriya besselevykh funktsii, IL, M., 1949

[9] Krein M. G., Nudelman A. A., Problema momentov Markova i eksperimentalnye zadachi, Nauka, M., 1973 | MR

[10] Atkinson F., Diskretnye i nepreryvnye granichnye zadachi, Mir, M., 1968 | MR | Zbl