On continuation of~functions with polar singularities
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384
Voir la notice de l'article provenant de la source Math-Net.Ru
The main result is
Theorem 1 . {\it If $f$ is a holomorphic function on the polydisk $'U\times U_n$ in $\mathbf C^n,$ and for each fixed $'a$ in some nonpluripolar set $E\subset{}'U$ the function $f('a,z_n)$ can be continued holomorphically to the whole plane with the exception of some polar set of singularities, then $f$ can be continued holomorphically
to $('U\times\mathbf C)\setminus S,$ where $S$ is a closed pluripolar subset of $'U\times\mathbf C$.}
Some generalizations are also given, along with corollaries on extension of functions with analytic sets of singularities.
Bibliography: 13 titles.
@article{SM_1988_60_2_a7,
author = {A. S. Sadullaev and E. M. Chirka},
title = {On continuation of~functions with polar singularities},
journal = {Sbornik. Mathematics},
pages = {377--384},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/}
}
A. S. Sadullaev; E. M. Chirka. On continuation of~functions with polar singularities. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/