On continuation of functions with polar singularities
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main result is Theorem 1 . {\it If $f$ is a holomorphic function on the polydisk $'U\times U_n$ in $\mathbf C^n,$ and for each fixed $'a$ in some nonpluripolar set $E\subset{}'U$ the function $f('a,z_n)$ can be continued holomorphically to the whole plane with the exception of some polar set of singularities, then $f$ can be continued holomorphically to $('U\times\mathbf C)\setminus S,$ where $S$ is a closed pluripolar subset of $'U\times\mathbf C$.} Some generalizations are also given, along with corollaries on extension of functions with analytic sets of singularities. Bibliography: 13 titles.
@article{SM_1988_60_2_a7,
     author = {A. S. Sadullaev and E. M. Chirka},
     title = {On continuation of~functions with polar singularities},
     journal = {Sbornik. Mathematics},
     pages = {377--384},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - E. M. Chirka
TI  - On continuation of functions with polar singularities
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 377
EP  - 384
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/
LA  - en
ID  - SM_1988_60_2_a7
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A E. M. Chirka
%T On continuation of functions with polar singularities
%J Sbornik. Mathematics
%D 1988
%P 377-384
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/
%G en
%F SM_1988_60_2_a7
A. S. Sadullaev; E. M. Chirka. On continuation of functions with polar singularities. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/

[1] Vladimirov V. S., Metody teorii funktsii mnogikh kompleksnykh peremennykh, Nauka, M., 1964 | MR

[2] Shabat B. V., Vvedenie v kompleksnyi analiz, Nauka, M., 1976 | MR

[3] Rothstein W., “Ein neuer Beweis des Hartogsschen Hauptsatzes und sline Ausdehnung auf meromorphe Functionen”, Math. Z., 53 (1950), 84–95 | DOI | MR | Zbl

[4] Kazaryan M. V., “Meromorfnoe prodolzhenie po gruppam peremennykh”, Matem. sb., 125(167) (1984), 384–397 | MR

[5] Kazaryan M. V., “O golomorfnom prodolzhenii funktsii so spetsialnymi osobennostyami v $\mathbf{C}^n$”, DAN ArmSSR, 76 (1983), 13–17 | MR | Zbl

[6] Chirka E. M., “Ratsionalnye priblizheniya golomorfnykh funktsii s osobennostyami konechnogo poryadka”, Matem. sb., 100(142) (1976), 137–155 | Zbl

[7] Oka K., “Notes sur les families des fonctions analytiques multiform ets”, J. Sci. Hiroshima Univ. Ser. A, 4 (1934), 93–98 | Zbl

[8] Nishino T., “Sur les ensembles pseudoconcaves”, J. Math. Kyoto Univ., 1 (1962), 225–245 | MR | Zbl

[9] Slodkowski Z., “On subharmonicity of the capacity of the spectrum”, Proc. Amer. Math. Soc., 81 (1981), 243–249 | DOI | MR | Zbl

[10] Sadullaev A., “Ratsionalnye approksimatsii i plyuripolyarnye mnozhestva”, Matem sb., 119(161) (1982), 96–118 | MR | Zbl

[11] Sadullaev A., “Kriterii bystroi ratsionalnoi approksimatsii v $\mathbf{C}^n$”, Matem. sb., 125(167) (1984), 269–279 | MR | Zbl

[12] Sadullaev A., “Plyurisubgarmonicheskie mery i emkosti na kompleksnykh mnogoobraziyakh”, UMN, 36:4 (1981), 53–105 | MR | Zbl

[13] Uolsh Dzh. L., Interpolyatsiya i approksimatsiya ratsionalnymi funktsiyami v kompleksnoi oblasti, IL, M., 1961 | MR