On continuation of~functions with polar singularities
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384

Voir la notice de l'article provenant de la source Math-Net.Ru

The main result is Theorem 1 . {\it If $f$ is a holomorphic function on the polydisk $'U\times U_n$ in $\mathbf C^n,$ and for each fixed $'a$ in some nonpluripolar set $E\subset{}'U$ the function $f('a,z_n)$ can be continued holomorphically to the whole plane with the exception of some polar set of singularities, then $f$ can be continued holomorphically to $('U\times\mathbf C)\setminus S,$ where $S$ is a closed pluripolar subset of $'U\times\mathbf C$.} Some generalizations are also given, along with corollaries on extension of functions with analytic sets of singularities. Bibliography: 13 titles.
@article{SM_1988_60_2_a7,
     author = {A. S. Sadullaev and E. M. Chirka},
     title = {On continuation of~functions with polar singularities},
     journal = {Sbornik. Mathematics},
     pages = {377--384},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/}
}
TY  - JOUR
AU  - A. S. Sadullaev
AU  - E. M. Chirka
TI  - On continuation of~functions with polar singularities
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 377
EP  - 384
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/
LA  - en
ID  - SM_1988_60_2_a7
ER  - 
%0 Journal Article
%A A. S. Sadullaev
%A E. M. Chirka
%T On continuation of~functions with polar singularities
%J Sbornik. Mathematics
%D 1988
%P 377-384
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/
%G en
%F SM_1988_60_2_a7
A. S. Sadullaev; E. M. Chirka. On continuation of~functions with polar singularities. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 377-384. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a7/