Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375
Voir la notice de l'article provenant de la source Math-Net.Ru
The article consists of three sections. In § 1, relations among the stationary subgroups are proved, and a method of computing $B_*$ from the structure of the algebra of covariants $k[V]^U$ is presented. § 2 contains a proof of a reduction theorem for covariants. In § 3, some examples are collected and some consideration given to the connection between the algebra of covariants $k[V]^U$ and the algebra of invariants $k[V\times V^*]^G$.
Bibliography: 15 titles.
@article{SM_1988_60_2_a6,
author = {D. I. Panyushev},
title = {Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants},
journal = {Sbornik. Mathematics},
pages = {365--375},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/}
}
TY - JOUR AU - D. I. Panyushev TI - Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants JO - Sbornik. Mathematics PY - 1988 SP - 365 EP - 375 VL - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/ LA - en ID - SM_1988_60_2_a6 ER -
D. I. Panyushev. Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/