Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375

Voir la notice de l'article provenant de la source Math-Net.Ru

The article consists of three sections. In § 1, relations among the stationary subgroups are proved, and a method of computing $B_*$ from the structure of the algebra of covariants $k[V]^U$ is presented. § 2 contains a proof of a reduction theorem for covariants. In § 3, some examples are collected and some consideration given to the connection between the algebra of covariants $k[V]^U$ and the algebra of invariants $k[V\times V^*]^G$. Bibliography: 15 titles.
@article{SM_1988_60_2_a6,
     author = {D. I. Panyushev},
     title = {Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants},
     journal = {Sbornik. Mathematics},
     pages = {365--375},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 365
EP  - 375
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/
LA  - en
ID  - SM_1988_60_2_a6
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants
%J Sbornik. Mathematics
%D 1988
%P 365-375
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/
%G en
%F SM_1988_60_2_a6
D. I. Panyushev. Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/