Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for $U$-invariants
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article consists of three sections. In § 1, relations among the stationary subgroups are proved, and a method of computing $B_*$ from the structure of the algebra of covariants $k[V]^U$ is presented. § 2 contains a proof of a reduction theorem for covariants. In § 3, some examples are collected and some consideration given to the connection between the algebra of covariants $k[V]^U$ and the algebra of invariants $k[V\times V^*]^G$. Bibliography: 15 titles.
@article{SM_1988_60_2_a6,
     author = {D. I. Panyushev},
     title = {Orbits of maximal dimension of~solvable subgroups of reductive linear groups, and reduction for $U$-invariants},
     journal = {Sbornik. Mathematics},
     pages = {365--375},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/}
}
TY  - JOUR
AU  - D. I. Panyushev
TI  - Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for $U$-invariants
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 365
EP  - 375
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/
LA  - en
ID  - SM_1988_60_2_a6
ER  - 
%0 Journal Article
%A D. I. Panyushev
%T Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for $U$-invariants
%J Sbornik. Mathematics
%D 1988
%P 365-375
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/
%G en
%F SM_1988_60_2_a6
D. I. Panyushev. Orbits of maximal dimension of solvable subgroups of reductive linear groups, and reduction for $U$-invariants. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 365-375. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a6/

[1] Brion M., “Invariants d'un sous-groupe unipotent maximal d'un groupe semi-simple”, Ann. L'Inst. Fourier, 27:1 (1983), 1–27 | MR | Zbl

[2] Vinberg E. B., Popov V. L., “Ob odnom klasse kvaziodnorodnykh affinnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:4 (1972), 749–763 | MR

[3] Vinberg E. B., Onischik A. L., Seminar po algebraicheskim gruppam i gruppam Li 1967/68, MGU, M., 1969

[4] Luna D., “Sur les orbites fermees des groupes algebriques reductifs”, Invent. math., 16:1 (1972), 1–5 | DOI | MR | Zbl

[5] Luna D., “Slices etales”, Bull. Soc. math. France, 33 (1973), 81–105 | MR | Zbl

[6] Luna D., “Adherence d'orbite et invariants”, Invent. math., 29:3 (1975), 231–238 | DOI | MR | Zbl

[7] Popov V. L., “Teorema konechnosti dlya predstavlenii so svobodnoi algebroi invariantov”, Izv. AN SSSR. Ser. matem., 46:2 (1982), 347–370 | MR

[8] Popov V. L., “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34:3 (1970), 523–531 | MR

[9] Richardson R. W., “Principal orbit types for algebraic transformation spaces in characteristic zero”, Invent. math., 16:1 (1972), 6–14 | DOI | MR | Zbl

[10] Rosenlicht M., “On quotient varieties and the affine embeddings of certain homogeneous spaces”, Trans. Amer. math. soc., 101 (1961), 211–223 | DOI | MR | Zbl

[11] Rosenlicht M., “A remark on a quotient spaces”, An. Acad. Brazil. Cienc., 35 (1963), 487–489 | MR | Zbl

[12] Elashvili A. G., “Kanonicheskii vid i statsionarnye podalgebry tochek obschego polozheniya dlya prostykh lineinykh grupp Li”, Funkts. analiz i ego prilozh., 6:1 (1972), 51–62 | Zbl

[13] Vinberg E. B., “O zamykanii orbity reduktivnoi lineinoi gruppy”, Algebra, MGU, M., 1980, 31–36 | MR

[14] Brion M., Luna D., Vust Th., Expaces homogenes spheriques, Preprint L'Inst. Fourier No 38, 1985

[15] Elashvili A. G., “Statsionarnye podalgebry tochki obschego polozheniya dlya borelevskikh podgrupp prostykh lineinykh grupp Li”, 18 Vsesoyuznaya algebraicheskaya konferentsiya. Tezisy soobschenii. Ch. II. S. 294, Kishinev, 1985