On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 347-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $D$ be a convex domain and $K$ a convex compact set in $\mathbf C^l$; let $H(D)$ be the space of analytic functions in $D$, provided with the topology of uniform convergence on compact sets, and $H(K)$ the space of germs of analytic functions on $K$ with the natural inductive limit topology; and let $H'(K)$ be the space dual to $H(K)$. Each functional $T\in H'(K)$ generates a convolution operator $(\check Ty)(z)=T_\zeta(y(z+\zeta))$, $y\in H(D+K)$, $z\in D$, which acts continuously from $H(D+K)$ into $H(D)$. Further let $(\mathscr FT)(z)=T_\zeta(\exp\langle z,\zeta\rangle)$ be the Fourier–Borel transform of the functional $T\in H'(K)$. In this paper the following theorem is proved: Theorem. {\it Let $D$ be a bounded convex domain in $\mathbf C^l$ with boundary of class $C^1$ or $D=D_1\times\dots\times D_l,$ where the $D_j$ are bounded planar convex domains with boundaries of class $C^1,$ and let $T\in H'(K)$. In order that $\check T(H(D+K))=H(D)$ it is necessary and sufficient that {\rm1)} $\mathscr L^*_{\mathscr FT}(\zeta)=h_K(\zeta)$ $\forall\,\zeta\in\mathbf C^l;$ {\rm2)} $(\mathscr FT)(z)$ be a function of completely regular growth in $\mathbf C^l$ in the sense of weak convergence in $D'(\mathbf C^l)$.} Here $\mathscr L^*_{\mathscr FT}(\zeta)=\varlimsup_{z\to\zeta}\, \varlimsup_{r\to\infty }\frac{\ln |(\mathscr FT)(rz)|}{r}$ is the regularized radial indicator of the entire function $(\mathscr FT)(z)$, and $h_K(\zeta)$ is the support function of the compact set $K$. Bibliography: 29 titles.
@article{SM_1988_60_2_a5,
     author = {V. V. Morzhakov},
     title = {On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$},
     journal = {Sbornik. Mathematics},
     pages = {347--364},
     year = {1988},
     volume = {60},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/}
}
TY  - JOUR
AU  - V. V. Morzhakov
TI  - On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 347
EP  - 364
VL  - 60
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/
LA  - en
ID  - SM_1988_60_2_a5
ER  - 
%0 Journal Article
%A V. V. Morzhakov
%T On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$
%J Sbornik. Mathematics
%D 1988
%P 347-364
%V 60
%N 2
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/
%G en
%F SM_1988_60_2_a5
V. V. Morzhakov. On epimorphicity of a convolution operator in convex domains in $\mathbf C^l$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 347-364. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/

[1] Korobeinik Yu. F., “O resheniyakh nekotorykh funktsionalnykh uravnenii v klassakh funktsii, analiticheskikh v vypuklykh oblastyakh”, Matem. sb., 75(117) (1968), 225–234 | MR | Zbl

[2] Korobeinik Yu. F., “Ob analiticheskikh resheniyakh integralnogo uravneniya s yadrom, zavisyaschim ot raznosti argumentov”, Matem. analiz i ego prilozheniya, 3, Rostov-na-Donu, 1971, 3–19 | MR | Zbl

[3] Korobeinik Yu. F., “Suschestvovanie analiticheskogo resheniya differentsialnogo uravneniya beskonechnogo poryadka i kharakter ego oblasti analitichnosti”, Matem. sb., 80(122) (1969), 52–76 | MR | Zbl

[4] Epifanov O. V., “Razreshimost uravnenii svertki v vypuklykh oblastyakh”, Matem. zametki, 15 (1974), 787–796 | MR | Zbl

[5] Epifanov O. V., “K voprosu ob epimorfizme operatora svertki v vypuklykh oblastyakh”, Matem. zametki, 16 (1974), 415–422 | MR | Zbl

[6] Epifanov O. V., “Kriterii epimorfnosti svertki v proizvolnykh oblastyakh kompleksnoi ploskosti”, Matem. zametki, 31 (1982), 695–705 | MR | Zbl

[7] Tkachenko V. A., “Ob operatorakh tipa svertki v prostranstvakh analiticheskikh funktsionalov”, DAN SSSR, 219 (1974), 555–557 | Zbl

[8] Tkachenko V. A., “Uravneniya svertki v prostranstvakh analiticheskikh funktsionalov”, Izv. AN SSSR. Ser. matem., 41 (1977), 378–392 | Zbl

[9] Znamenskii S. V., Ob oblastyakh suschestvovaniya analiticheskikh reshenii differentsialnogo uravneniya beskonechnogo poryadka s postoyannymi koeffitsientami, Preprint IFSO-6M, IFSO, Krasnoyarsk, 1976

[10] Znamenskii S. V., Netraditsionnaya vypuklost v napravlenii ploskikh oblastei t kompaktov i svoistva golomorfnykh reshenii differentsialnykh uravnenii beskonechnogo poryadka, Dep. v VINITI 15.07.80, No 3063–80

[11] Leontev A. F., Obobschenie ryadov eksponent, Nauka, M., 1981 | MR

[12] Malgrange B., “Existense et approximation des solutions des équations aux dérivées partielles et des équations de convolution”, Ann. Inst. Fourier, 1955–56, no. 6, 271–354 | MR

[13] Martineau A., “Equations differentielles d'ordre infini”, Bull. Soc. Math. France, 1967, no. 95, 109–154 | MR | Zbl

[14] Napalkov V. V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982 | MR

[15] Morzhakov V. V., “Ob uravneniyakh svertki v prostranstvakh funktsii, golomorfnykh v vypuklykh oblastyakh i na vypuklykh kompaktakh v $\mathbf{C}^n$”, Matem. zametki., 16 (1974), 431–440 | Zbl

[16] Ronkin L. I., Elementy teorii analiticheskikh funktsii mnogikh peremennykh, Naukova dumka, Kiev, 1977 | MR | Zbl

[17] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[18] Sebastyan-i-Silva Zh., “O nekotorykh lokalno vypuklykh prostranstvakh, vazhnykh v prilozheniyakh”, Matematika (sb. perevodov), 1:1 (1967), 60–77

[19] Ehrenpreis L., “Solution of some problems of division. Part IV”, Amer. J. Math., LXXXII:3 (1960), 522–588 | DOI | MR

[20] Ronkin L. I., Vvedenie v teoriyu tselykh funktsii mnogikh peremennykh, Nauka, M., 1971 | MR | Zbl

[21] Khërmander L., Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR

[22] Edvards R., Funktsionalnyi analiz, Mir, M., 1969

[23] Gruman L., “Entire functions of several variables and their asymptotic growth”, Arkiv. für math., 9:1 (1971), 141–163 | DOI | MR | Zbl

[24] Azarin V. S., “Ob asimptoticheskom povedenii subgarmonicheskikh i tselykh funktsii”, DAN SSSR, 229 (1976), 1289–1291 | MR | Zbl

[25] Agronovich P. Z., Ronkin L. I., O funktsiyakh vpolne regulyarnogo rosta mnogikh peremennykh, Preprint FTINT AN USSR, FTINT, Kharkov, 1976

[26] Favorov S. Yu., “O slozhenii indikatorov tselykh i subgarmonicheskikh funktsii mnogikh peremennykh”, Matem. sb., 105(147) (1978), 128–140 | MR | Zbl

[27] Sigurdsson R., Growth properties of analytic and plurisubharmonic functions of finite order, Doct. Dissertation, University of Lund and Lund institute of technology, October, 1984

[28] Favorov S. Yu., “O tselykh funktsiyakh vpolne regulyarnogo rosta mnogikh peremennykh”, Teoriya funktsii, funktsionalnyi analiz i ikh prilozheniya, 38, Kharkov, 1982, 103–111 | MR | Zbl

[29] Sekerin A. B., Predstavlenie funktsii kratnymi ryadami eksponent, Dis. $\dots$ kand. fiz.-matem. nauk, RGU, Rostov-na-Donu, 1982