On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 347-364

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a convex domain and $K$ a convex compact set in $\mathbf C^l$; let $H(D)$ be the space of analytic functions in $D$, provided with the topology of uniform convergence on compact sets, and $H(K)$ the space of germs of analytic functions on $K$ with the natural inductive limit topology; and let $H'(K)$ be the space dual to $H(K)$. Each functional $T\in H'(K)$ generates a convolution operator $(\check Ty)(z)=T_\zeta(y(z+\zeta))$, $y\in H(D+K)$, $z\in D$, which acts continuously from $H(D+K)$ into $H(D)$. Further let $(\mathscr FT)(z)=T_\zeta(\exp\langle z,\zeta\rangle)$ be the Fourier–Borel transform of the functional $T\in H'(K)$. In this paper the following theorem is proved: Theorem. {\it Let $D$ be a bounded convex domain in $\mathbf C^l$ with boundary of class $C^1$ or $D=D_1\times\dots\times D_l,$ where the $D_j$ are bounded planar convex domains with boundaries of class $C^1,$ and let $T\in H'(K)$. In order that $\check T(H(D+K))=H(D)$ it is necessary and sufficient that {\rm1)} $\mathscr L^*_{\mathscr FT}(\zeta)=h_K(\zeta)$ $\forall\,\zeta\in\mathbf C^l;$ {\rm2)} $(\mathscr FT)(z)$ be a function of completely regular growth in $\mathbf C^l$ in the sense of weak convergence in $D'(\mathbf C^l)$.} Here $\mathscr L^*_{\mathscr FT}(\zeta)=\varlimsup_{z\to\zeta}\, \varlimsup_{r\to\infty }\frac{\ln |(\mathscr FT)(rz)|}{r}$ is the regularized radial indicator of the entire function $(\mathscr FT)(z)$, and $h_K(\zeta)$ is the support function of the compact set $K$. Bibliography: 29 titles.
@article{SM_1988_60_2_a5,
     author = {V. V. Morzhakov},
     title = {On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$},
     journal = {Sbornik. Mathematics},
     pages = {347--364},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/}
}
TY  - JOUR
AU  - V. V. Morzhakov
TI  - On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 347
EP  - 364
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/
LA  - en
ID  - SM_1988_60_2_a5
ER  - 
%0 Journal Article
%A V. V. Morzhakov
%T On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$
%J Sbornik. Mathematics
%D 1988
%P 347-364
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/
%G en
%F SM_1988_60_2_a5
V. V. Morzhakov. On epimorphicity of a~convolution operator in convex domains in~$\mathbf C^l$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 347-364. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a5/