Asymptotics of~a~fundamental solution of~a~parabolic equation as~ $t\to\infty$
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 315-337
Voir la notice de l'article provenant de la source Math-Net.Ru
The author analyzes the behavior as $t\to\infty$ of the fundamental solution $G(x, s, t)$ of the Cauchy problem for the equation $v_t-v_{xx}-a(x)v_x-b(x)v=0$ with infinitely differentiable coefficients $a(x)$ and $b(x)$ decreasing as $|x|\to\infty$. For the case when the functions $a(x)$ and $b(x)$ can be expanded as $x\to\pm\infty$ on asymptotic series of the form
\begin{gather*}
a(x)=a_1|x|^{-\alpha_1}+\dots +a_i|x|^{-\alpha_i}+\dots ,
\\
b(x)=b_1|x|^{-\beta_1}+\dots +b_i|x|^{-\beta_i}+\dots ,
\end{gather*}
where $\alpha_m$, $\beta_m\uparrow\infty$ as $m\to\infty$, $\alpha_1>1$, $\beta_1>2$, she constructs and justifies asymptotic expansion of the fundamental solution $G(x, s, t)$ to within any power of $G(x, s, t)$ uniformly with respect to all $x$ and $s$ in $\mathbf R^1$.
Bibliography: 12 titles.
@article{SM_1988_60_2_a3,
author = {E. F. Lelikova},
title = {Asymptotics of~a~fundamental solution of~a~parabolic equation as~ $t\to\infty$},
journal = {Sbornik. Mathematics},
pages = {315--337},
publisher = {mathdoc},
volume = {60},
number = {2},
year = {1988},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a3/}
}
E. F. Lelikova. Asymptotics of~a~fundamental solution of~a~parabolic equation as~ $t\to\infty$. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 315-337. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a3/