Identities of almost stable group representations
Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 569-581

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that almost stable group representations over a field have a finite basis of identities. Moreover, a variety generated by an arbitrary almost stable representation is Specht and all of its subvarieties have a finite uniformly bounded basis rank. In particular, the identities of an arbitrary representation of a finite group are finitely based. Bibliography: 17 titles.
@article{SM_1988_60_2_a19,
     author = {Vovsi S. M. and Nguyen Hung Son},
     title = {Identities of almost stable group representations},
     journal = {Sbornik. Mathematics},
     pages = {569--581},
     publisher = {mathdoc},
     volume = {60},
     number = {2},
     year = {1988},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_1988_60_2_a19/}
}
TY  - JOUR
AU  - Vovsi S. M.
AU  - Nguyen Hung Son
TI  - Identities of almost stable group representations
JO  - Sbornik. Mathematics
PY  - 1988
SP  - 569
EP  - 581
VL  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_1988_60_2_a19/
LA  - en
ID  - SM_1988_60_2_a19
ER  - 
%0 Journal Article
%A Vovsi S. M.
%A Nguyen Hung Son
%T Identities of almost stable group representations
%J Sbornik. Mathematics
%D 1988
%P 569-581
%V 60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_1988_60_2_a19/
%G en
%F SM_1988_60_2_a19
Vovsi S. M.; Nguyen Hung Son. Identities of almost stable group representations. Sbornik. Mathematics, Tome 60 (1988) no. 2, pp. 569-581. http://geodesic.mathdoc.fr/item/SM_1988_60_2_a19/